Skip to main content

X-ray Computed Tomography for Non-destructive Testing and Materials Characterization

  • Chapter
Integrated Imaging and Vision Techniques for Industrial Inspection

Abstract

X-ray computed tomography (XCT) with flat-panel matrix detectors is a promising non-destructive method to scan and characterize external and internal structures of a specimen. Using XCT, both size and topology of different types of heterogeneities may vary largely. The different size scales of the heterogeneities and of the affected material volume require appropriate tomographic methods, scanning geometries and resolutions. In order to quantify features of interest from XCT scans, a major challenge is still found in the analysis and visualization of the generated XCT data: Advanced 3D-image processing techniques are needed for robust extraction and characterization of each single feature of interest. Interactive visualization techniques are needed for further exploration and analysis of these increasingly complex data spaces in order to provide novel insights for domain specialists. As examples of how image processing and visualization complement XCT various application cases are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Proceedings of 16th world conference on non-destructive testing, Montreal, 30 Aug–3 Sept 2004

    Google Scholar 

  2. Proceedings of 9th European conference on non-destructive testing, Berlin, 25–29 Sept 2006

    Google Scholar 

  3. Proceedings of 17th world conference on non-destructive testing, Shanghai, 25–28 Oct 2008

    Google Scholar 

  4. Proceedings of 10th European conference on non-destructive testing, Moscow, 7–11 June 2010

    Google Scholar 

  5. Proceedings of 18th world conference on non-destructive testing, Durban, 16–20 April 2012

    Google Scholar 

  6. Proceedings of 11th European conference on non-destructive testing, Prague, 6–10 Oct 2014

    Google Scholar 

  7. INSA-Lyon (ed) (2007) Proceedings of international symposium on digital industrial radiology and computerized tomography, Lyon, 25–27 June 2007

    Google Scholar 

  8. Kastner J (ed) (2008) Proceedings of Industrielle Computertomografietagung, Shaker Verlag, Wels, Austria, 26–27 Feb 2008 (ISBN 978-3-8322-6949-4)

    Google Scholar 

  9. Kastner J (ed) (2010) Proceedings of Industrielle Computertomografietagung, Shaker Verlag, Wels, Austria, 28–30 Sept 2010 (ISBN 978-3-8322-6949-4)

    Google Scholar 

  10. Kastner J (ed) (2012) Proceedings industrial computed tomography conference 2012, Shaker Verlag, Maastricht, 19–20 Sept 2012 (ISBN 978-3-8322-9418-2)

    Google Scholar 

  11. Kastner J (ed) (2014) Proceedings industrial computed tomography conference 2014, Shaker Verlag, Maastricht, 25–28 Feb 2014 (ISBN: 978-3-8440-2557-6)

    Google Scholar 

  12. Baruchel J, Buffiere JY, Maire E, Peix G (eds) (2000) X-ray tomography in materials science. Hermes Science Publications, Paris

    Google Scholar 

  13. De Chiffre L, Carmignato S, Kruth JP, Schmitt R, Weckenmann A (2014) Industrial applications of computed tomography. CIRP Ann Manufact Technol 63:655–677

    Google Scholar 

  14. Hsieh J (2003) Computed tomography, principles, design, artifacts and recent advances. SPIE The International Society for Optical Engineering, Bellingham

    Google Scholar 

  15. Buzug TM (2008) Computed tomography: from photon statistics to modern cone-beam CT. Springer, Berlin

    Google Scholar 

  16. Oster R (1999) Computed tomography as a non-destructive test method for fibre main rotor blades in development, series and maintenance. In: Proceedings of international symposium on computerized tomography for industrial applications and image processing in radiology (DGZfP-Berichtsband 67-CD)

    Google Scholar 

  17. Illerhaus B, Goebbels J, Kettschau J, Reimers P (1989) Non Destructive Waste Form and Package Characterization by Computed Tomography 12th Int. Symp. on the Scientific Basis for Nuclear Waste Management, Berlin, Oct. 10-13, 1988 Mat. Res. Soc. Symp. Proc. 127, 507-512

    Google Scholar 

  18. Heinzl Ch, Kastner J, Gröller E (2007) Surface extraction from multi-material components for metrology using dual energy CT. IEEE Trans Visual Comput Graphics 13(3):1520–1528

    Article  Google Scholar 

  19. Heinzl C (2009) Analysis and Visualization of Industrial CT Data. Ph.D. thesis, Institute of Computer Graphics and Algorithms, Vienna University of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria

    Google Scholar 

  20. http://www.comet-xray.com/technology-en/high-energy. Accessed 15 Aug 2015

  21. Ebel H (1999) Advances in X-ray Analysis. In: XRS 281999, No 4, pp 255–266

    Google Scholar 

  22. Harrer B, Kastner J (2011) Cone beam ct for non-destructive testing fabrication and characterization in the micro-nano range: new trends for two and three dimensional structures, ‘X-ray microtomography: characterisation of structures and defect analysis’. Springer, Heidelberg, 119–150

    Google Scholar 

  23. Moore PO (ed) (2002) Nondestructive testing handbook, radiographic testing, vol 4. American Society for Nondestructive Testing, Columbus

    Google Scholar 

  24. Eisberg R, Resnick R (1985) Quantum physics of atoms, molecules, solids, nuclei, and particles. Wiley, New York (ISBN-13: 978-0471873730)

    Google Scholar 

  25. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS (2008) NIST standard reference database 8 (XGAM). Online im WWW unter URL: http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html. Accessed 08 July 2014

  26. VDA Unterausschuss ZfP und DGZfP Fachausschuss Durchstrahlungsprüfung (editor): VDA-Prüfblatt 236-101/DGZfP Merkblatt D6: Anforderungen und Rahmenbedingungen für den Einsatz der Röntgencomputertomographie in der Automobilindustrie. 2008-11. Berlin : DGZfP (2008)

    Google Scholar 

  27. Partridge M, Hesse B-M, Müller L (2002) A performance comparison of direct- and indirect-detection flat-panel imagers. Nucl Instrum Methods Phys Res A 484:351–363

    Article  Google Scholar 

  28. Hoheisel M (1998) Amorphous silicon X-ray detectors. J Non-Cryst Solids 227–230

    Google Scholar 

  29. Lee HR, Ellingson W (2001) Characterization of a flat panel amorphous Si detector for CT. J X-ray Sci Technol 9:43–53

    Google Scholar 

  30. Gondrom S, Schröpfer A (1999) Digital computed laminography and tomosynthesis- functional principles and industrial applications. In: Proceedings of international symposium on computerized tomography for industrial applications and image processing in radiology (DGZfP-Berichtsband 67-CD), DGZfP, 5

    Google Scholar 

  31. Simon M, Sauerwein C, Tiseanu I (2004) Extended 3D CT method for the inspection of large components. In: Proceedings of 16th world conference on nondestructive testing, WCNDT, 6 Sept 2004

    Google Scholar 

  32. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone beam algorithm. J Opt Soc Am 6:612–619

    Article  Google Scholar 

  33. Reiter M, Heinzl C, Salaberger D, Weiss D, Kastner J (2010) Study on parameter vatiation of an industrial computed tomography simulation tool concerning dimensional measurement deviations. Moscow ECNDT 2010

    Google Scholar 

  34. Smith BD (1985) Image reconstruction from cone-beam projections: necessary and sufficient conditions and reconstruction methods. IEEE Trans on Med Image MI-4(1):14–25

    Google Scholar 

  35. Kastner J, Harrer B, Requena G, Brunke O (2010) A comparative study of high resolution cone beam X-ray tomography and synchrotron tomography applied to Fe- and Al-alloys. NDT&E Int 43(7):599–605

    Article  Google Scholar 

  36. Kastner J (2012) Habilitation thesis

    Google Scholar 

  37. Qureshi H, Malik M, Ahmad MA, Heinzl C (2012) Benchmarking of de-noising techniques for streaking artifacts in industrial 3DXCT scan data. Proc WSCG 2012:9

    Google Scholar 

  38. Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27

    Google Scholar 

  39. Kastner J, Harrer B, Degischer H-P (2011) High resolution cone beam x-ray computed tomography for 3D-microstructure characterization of Al-alloys. Mater Charact 62:99–107

    Article  Google Scholar 

  40. Kastner J, Zaunschirm S, Baumgartner S, Requena G, Pinto H, Garces G (2014) 3D-microstructure characterization of thermomecanically treated Mg-alloys by high resolution X-ray computed tomography. In: Proceedings ECNDT, Prague

    Google Scholar 

  41. Salaberger D, Kannappan KA, Kastner J, Reussner J, Auinger T (2011) Evaluation of computed tomography data from fibre reinforced polymers to determine fibre length distribution. Int Polym Proc 27(3):283–291

    Article  Google Scholar 

  42. Weissenböck J, Amirkhanov A, Li W, Reh A, Amirkhanov A, Gröller E, Kastner J, Heinzl C (2014) FiberScout: an interactive tool for exploring and analyzing fiber reinforced polymers. IEEE Pac Vis Symp (PacificVis) 2014:153–160

    Google Scholar 

  43. Kastner J, Plank B, Salaberger D, Sekelja J (2010) Porosity measurement of carbon fibre-reinforced polymers by X-ray computed tomography. In: 2nd international symposium on NDT in aerospace, GE, Hamburg, 22–24 Nov 2010

    Google Scholar 

  44. Reh A, Plank B, Kastner J, Gröller E, Heinzl C (2012) Porosity maps—interactive exploration and visual analysis of porosity in carbon fiber reinforced polymers. Comput Graph Forum 31:1185–1194

    Article  Google Scholar 

  45. Reh A, Gusenbauer C, Kastner J, Gröller E, Heinzl C (2013) MObjects—a novel method for the visualization and interactive exploration of defects in industrial XCT data. IEEE Trans Vis Comput Graph (TVCG) 19(12):2906–2915

    Article  Google Scholar 

  46. Kastner J, Kickinger R, Salaberger D (2011) High resolution X-ray computed tomography for 3D-microstructure characterisation of a cellulose particle filled polymer foam. J Cell Plast 47:567–578

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by COMET programme of FFG and by the federal governments of Upper Austria and Styria. The author acknowledges the provision of samples by the companies AMAG AG, FACC AG, Georg Fischer Eisenguss GmbH and TCKT GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Kastner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London (outside the USA)

About this chapter

Cite this chapter

Kastner, J., Heinzl, C. (2015). X-ray Computed Tomography for Non-destructive Testing and Materials Characterization. In: Liu, Z., Ukida, H., Ramuhalli, P., Niel, K. (eds) Integrated Imaging and Vision Techniques for Industrial Inspection. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-6741-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6741-9_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6740-2

  • Online ISBN: 978-1-4471-6741-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics