Skip to main content

Abstract

Industrial quality control often includes the inspection of parts of complex geometry. While such an inspection can be quite easily done by humans, it poses certain challenges if the task is to be automated. Quite often, robots are used for handling the part to acquire a large number of images, each showing a certain area of the surface. The process of acquiring sequences of multiple images also has implications for the machine vision and analysis methods used in such tasks. This chapter covers all topics that relate to the implementation of robotic inspection systems for industrial quality control. The focus is on machine vision, while aspects that deal with robotics will only be addressed at a conceptual level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tătar O, Mândru D, Ardelean I (2007) Development of mobile minirobots for in pipe inspection tasks. MECHANIKA, 6(68):1392–1207

    Google Scholar 

  2. Granosik G, Borenstein J, Hansen MG (2006) Serpentine robots for industrial inspection and surveillance. In: Huat LK (ed) Industrial robotics: programming, simulation and application, pp 702, ISBN: 3 86611-286-6

    Google Scholar 

  3. Edinbarough I, Balderas R, Bose S (2005) A vision and robot based on-line inspection monitoring system for electronic manufacturing. Comput Ind 56:986–996

    Article  Google Scholar 

  4. Woern H, Laengle T, Gauss M (2003) ARIKT: adaptive robot based visual inspection. Künstliche Intelligenz 2:33–35

    Google Scholar 

  5. Kuhlenkoetter B, Krewet C, Schueppstuhl T (2006) Adaptive robot based reworking system, industrial robotics: programming, simulation and applications. Low Kin Huat (ed), ISBN: 3-86611-286-6

    Google Scholar 

  6. Yang CC, Ciarallo FW (2001) Optimized sensor placement for active visual inspection. J Robotic Syst 18(1):1–15

    Article  Google Scholar 

  7. Biegelbauer G, Vincze M, Noehmayer H, Eberst C (2004) Sensor based robotics for fully automated inspection of bores at low volume high variant parts. IEEE international conference on robotics and automation, 5:4852—4857, 26 April–1 May 2004

    Google Scholar 

  8. Merat FL, Radack GM (1992) Automatic inspection planning within a feature-based CAD system. Robotics Comput Integr Manuf 9(1):61–66

    Article  Google Scholar 

  9. Park TH, Kim HJ, Kim N (2006) Path planning of automated optical inspection machines for PCB assembly systems. Int J Control Autom Syst 4(1):96–104

    MathSciNet  Google Scholar 

  10. Scoot WR, Roth G (2003) View planning for automated three-dimensional object reconstruction and inspection. ACM Comput Surv 35(1):64–96

    Article  Google Scholar 

  11. Lee KH, Park HP (2000) Automated inspection planning of free-form shape parts by laser scanning. Robot Comput Integr Manuf 16(4):201–210

    Article  Google Scholar 

  12. Lu CG, Morton D, Wu MH, Myler P (1999) Genetic algorithm modelling and solution of inspection path planning on a coordinate measuring machine (CMM). Int J Adv Manuf Technol 15:409–416

    Article  Google Scholar 

  13. Scott W, Roth G, Rivest JF (2002) Pose error effects on range sensing. In Proceedings of the 15th international conference on vision interface (Calgary, Alta., Canada), pp 331–338

    Google Scholar 

  14. Pisinger D, Ropke S (2010) Large neighborhood search. Handbook of Metaheuristics, pp 399–419

    Google Scholar 

  15. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26(1):29–41

    Article  Google Scholar 

  16. Ankerl M, Hämmerle A (2009) Applying ant colony optimisation to dynamic pickup and delivery. In: Comput Aided Syst Theory-EUROCAST, pp 721–728

    Google Scholar 

  17. Daniilidis K (1999) Hand-eye calibration using dual quaternions. Int J Robot Res 18(3):286–298

    Article  Google Scholar 

  18. Zhao Z, Liu Y (2006) Hand-eye calibration based on screw motions. 18th International conference on pattern recognition (ICPR’06), 3:1022–1026

    Google Scholar 

  19. Hollerbach JM, Wampler CW (1996) The calibration index and taxonomy for robot kinematic calibration methods. Int J Robot Res 15(6):573–591

    Article  Google Scholar 

  20. Pradeep V, Konolige K, Berger E (2010) Calibrating a multi-arm multi-sensor robot: a bundle adjustment approach. In: Proceedings of the International symposium on experimental robotics (ISER), Delhi India, Dec 18–21 2010

    Google Scholar 

  21. Strobl KH, Hirzinger G (2008) More accurate camera and hand-eye calibrations with unknown grid pattern dimensions. Proceedings-IEEE international conference on robotics and automation, pp 1398–1405

    Google Scholar 

  22. Eitzinger C, Heidl W, Lughofer E, Raiser S, Smith JE, Tahir MA, Sannen D, Van Brussel H (2009) Assessment of the influence of adaptive components in trainable surface inspection systems. Mach Vis Appl J, doi: 10.1007/s00138-009-0211-1

  23. Smith JE, Tahir MA, Caleb-Solly P, Lughofer E, Eitzinger C, Sannen D, Nuttin M (2009) Human-machine interaction issues in quality control based on on-line image classification. IEEE Trans Syst Man Cybern 39(5):960–971

    Article  Google Scholar 

  24. Eitzinger C, Thumfart S (2012) Optimizing feature calculation in adaptive machine vision systems. In: Sayed-Mouchaweh M, Lughofer E, Learning in non-stationary environments: methods and applications, Springer Science+Business Media New York, doi: 10.1007/978-1-4419-8020-5_13

  25. Szeliski R (2006) Image alignment and stitching: a tutorial. Found Trends Comput Graph Vis 2(1):1–104

    Article  MathSciNet  Google Scholar 

  26. Brown M, Lowe D (2007) Automatic panoramic image stitching using invariant features. Int J Comput Vision 74(1):59–73

    Article  Google Scholar 

  27. Kopf C, Heindl C, Rooker M, Bauer H, Pichler A (2013) A portable, low-cost 3D body scanning system. 4th International conference and exhibition on 3D body scanning technologies, CA USA Nov 19–20 2013

    Google Scholar 

  28. Schmitt R, Mersmann C, Schoenberg A (2009) Machine vision industrialising the textile-based FRP production. In: Proceedings of 6th international symposium on image and signal processing and analysis, pp 260–264

    Google Scholar 

  29. Palfinger W, Thumfart S, Eitzinger C (2011) Photometric stereo on carbon fibre surfaces. Proceeding of the Austrian association for pattern recognition

    Google Scholar 

  30. Thumfart S, Palfinger W, Stöger M, Eitzinger C (2013) Accurate fibre orientation measurement for carbon fibre surfaces. 15th International conference on computer analysis of images and patterns, pp. 75–82

    Google Scholar 

  31. Woodham R (1989) Photometric method for determining surface orientation from multiple images. Opt Eng 19(1):139–144

    Google Scholar 

  32. Johnson M, Adelson E (2011) Microgeometry capture using an elastomeric sensor. Comput Vis Pattern Recogn pp 2553–2560

    Google Scholar 

  33. Zhou K, Wang L, Tong Y, Desbrun M, Guo B, Shum HY (2005) Texture montage: seamless texturing of arbitrary surfaces from multiple images. Proceedings of ACM SIGGRAPH, pp 1148–1155

    Google Scholar 

  34. Avdelidis N, Gan T-H, Ibarra-Castanedo C, Maldaque X (2011) Infrared thermography as a non-destructive tool for martials characterisation and assessment. Proceedings—SPIE the international society for optical engineering, (8013–8039) Thermal Infrared Applications XXXIII

    Google Scholar 

  35. Holst G (2000) Common sense approach to thermal imaging. SPIE Volume PM-86, pp 60, ISBN: 0-8194-3722-0

    Google Scholar 

  36. Taib S, Jadin M, Kabir S (2012) Thermal Imaging for enhancing inspection reliability: detection and characterization, infrared thermography, Dr. Raghu V Prakash (Ed.), ISBN: 978-953-51-0242-7

    Google Scholar 

  37. Traxler G, Thanner P (2011) Automatisierte Wärmeflussprüfungen in der Stahlindustrie, Leitfaden zur Wärmeflussthermografie, ISBN 978-8396-0234-8

    Google Scholar 

  38. Ghidoni S, Minella M, Nanni L, Ferrari C, Moro M, Pagello E, Menegatti E (2013) Automatic crack detection in thermal images for metal parts. International conference on heating by electromagnetic sources (HES-13)

    Google Scholar 

Download references

Acknowledgments

The work presented in this chapter received cofunding from the European Commission in the 7th Framework Programme, projects “ThermoBot” (No. 284607) and FibreMap (No. 608768), and the Austrian Research Funding Agency (FFG), projects “SelTec”, “ProFit” and “LISP”.

The authors would like to thank all partners of these projects, and especially, Prof. Emanuele Menegatti, Dr. Stefano Ghidoni and the whole team of the IAS Lab of the University of Padova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Eitzinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London (outside the USA)

About this chapter

Cite this chapter

Eitzinger, C., Zambal, S., Thanner, P. (2015). Robotic Inspection Systems. In: Liu, Z., Ukida, H., Ramuhalli, P., Niel, K. (eds) Integrated Imaging and Vision Techniques for Industrial Inspection. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-6741-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6741-9_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6740-2

  • Online ISBN: 978-1-4471-6741-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics