Skip to main content

Part of the book series: Health Informatics ((HI))

  • 2715 Accesses

Abstract

The clinical laboratory (LAB) was an early adopter of computer technology, beginning with the chemistry and hematology laboratories, which had similar information processing requirements. LAB systems in the early 1960s were primarily offline, batch-oriented systems that used punched cards for data transfer to the hospital mainframe. The advent of minicomputers in the 1970s caused a rapid surge in the development of LAB systems that supported online processing of data from automated laboratory instruments. In the 1980s, LAB systems increasingly employed minicomputers to integrate data into a common database and satisfy functional requirements, including programs for quality control, reference values, trend analyses, graphical presentation, online test interpretations, and clinical guidelines. By 1987 about 20 % of US hospitals had computer links between their LAB systems and their hospital information systems and affiliated outpatient information systems. In the 1990s, LAB systems began using client-server architecture with networked workstations, and most hospitals had a variety of specialized clinical support information systems interconnected to form a medical information system with a distributed database of clinical data that constituted the electronic patient record. By the 2000s, several hundred different clinical tests were routinely available (there had been only a few dozen in the 1950s). The need for more sophisticated and powerful LAB systems has largely been met by commercially available standalone laboratory information systems (LIS); however, there is now increasing pressure to replace these products with the lab-system functionality of the enterprise-wide integrated electronic health record system, for which there is little reported experience.

Author was deceased at the time of publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams LB. Three surveillance and query languages. MD Comput. 1986;3:11–9.

    CAS  PubMed  Google Scholar 

  2. Allen JK, Batjer JD. Evaluation of an automated method for leukocyte differential counts based on electronic volume analysis. Arch Pathol Lab Med. 1985;109:534–9.

    CAS  PubMed  Google Scholar 

  3. Aller RD. Impact of Systeme International conversion on laboratory information systems. Arch Pathol Lab Med. 1987;111:1130–3.

    CAS  PubMed  Google Scholar 

  4. Amar H, Barton S, Dubac D, Grady G. SMAC: the computer controller analyzer. In. Advances in automated analysis. Technicon International Congress 1972. Tarrytown: Mediad; 1973. p. 41–6.

    Google Scholar 

  5. Ansley H, Ornstein L. Enzyme histochemistry and differential white cell counts on the Technicon Hemalog D. In; Advances in automated analysis. Technicon International Congress 1970. Tarrytown: Mediad; 1971. p. 437–46.

    Google Scholar 

  6. Arkin CF, Sherry MA, Gough AG, Copeland BE. An automatic leukocyte analyzer. Validity of its results. Am J Clin Pathol. 1977;67:159–69.

    CAS  PubMed  Google Scholar 

  7. Ball MJ, Jacobs SE. Hospital information systems as we enter the decade of the 80s. Proc SCAMC. 1980;1:646–50.

    Google Scholar 

  8. Ball MJ. An overview of total medical information systems. Methods Inf Med. 1971;10:73.

    CAS  PubMed  Google Scholar 

  9. Ball MJ. Introduction. Chapter 1. In: Ball MJ, editor. Selecting a computer system for the clinical laboratory. Springfield: Thomas; 1971. p. 3–4.

    Google Scholar 

  10. Ball MJ. Specifications for a laboratory data processing system. Appendix E. In: Ball MJ, editor. Selecting a computer system for the clinical laboratory. Springfield: Thomas; 1971. p. 96–106.

    Google Scholar 

  11. Ball MJ. Available computer systems. In: Ball MJ, editor. Selecting a computer system for the clinical laboratory. Springfield: Thomas; 1971. p. 54–73.

    Google Scholar 

  12. Ball MJ. Survey of pathologists’ experiences in computerization. In: Ball MJ, editor. Selecting a computer system for the clinical laboratory. Springfield: Thomas; 1971. p. 14–20.

    Google Scholar 

  13. Ball MJ. Selecting a computer system for the clinical laboratory. Springfield: Thomas; 1971.

    Google Scholar 

  14. Baorto DM, Cimino JJ, Parvin CA, Kahn MG. Using Logical Observation Identifier Names and Codes (LOINC) to exchange laboratory data among three academic hospitals. Proc AMIA. 1997;96–100.

    Google Scholar 

  15. Barnett GO, Hofmann PB. Computer technology and patient care: experiences of a hospital research effort. Inquiry. 1968;5:51–7.

    Google Scholar 

  16. Barnett GO, Castleman PA. A time-sharing computer system for patient-care activities. Comput Biomed Res. 1967;1:41–51.

    Article  CAS  PubMed  Google Scholar 

  17. Barnett GO, Souder D, Beaman P, Hupp J. MUMPS – an evolutionary commentary. Comput Biomed Res. 1981;14:112–8.

    Article  CAS  PubMed  Google Scholar 

  18. Barnett G, Greenes RA. Interface aspects of a hospital information system. Ann N Y Acad Sci. 1969;161:756–68.

    Article  CAS  PubMed  Google Scholar 

  19. Barnett GO. Massachusetts general hospital computer system. In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974.

    Google Scholar 

  20. Barnett GO, Greenes RA, Grossman JH. Computer processing of medical text information. Methods Inf Med. 1969;8:177–82.

    CAS  PubMed  Google Scholar 

  21. Barrett JP, Hersch PL, Caswell RJ. Evaluation of the impact of the implementation of the Technicon Medical Information System at El Camino Hospital. Part II: economic trend analysis. Final report 1972; p. 27.

    Google Scholar 

  22. Bassis ML, Collen M. Normal chemistry values in an automated multiphasic screening program. In; Proc Technicon Symposium 1986. Automation in Analytical Chemistry. White Plains: Mediad; 1987. p. 309–12.

    Google Scholar 

  23. Bates JE, Bessman JD. Evaluation of BCDE, a microcomputer program to analyze automated blood counts and differentials. Am J Clin Pathol. 1987;88:314–23.

    CAS  PubMed  Google Scholar 

  24. Benson ES. Research and educational initiatives in improving the use of the clinical laboratory [proceedings. Ann Biol Clin (Paris). 1978;36:159–61.

    CAS  Google Scholar 

  25. Benzel JE, Egan JJ, Hart OJ, et al. Evaluation of an automated leukocyte counting system. II. Normal cell identification. Am J Clin Path. 1974;62:530–6.

    Google Scholar 

  26. Biemann K. The role of computers in conjunction with analytical instrumentation. Proc IEEE. 1979;67:1287–99.

    Article  Google Scholar 

  27. Birndorf NI, Pentecost JO, Coakley JR, Spackman KA. An expert system to diagnose anemia and report results directly on hematology forms. Comput Biomed Res. 1996;29:16–26.

    Article  CAS  PubMed  Google Scholar 

  28. Bleich HL, Beckley RF, Horowitz GL, Jackson JD, Moody ES, Franklin C, et al. Clinical computing in a teaching hospital. N Engl J Med. 1985;312:756–64.

    Article  CAS  PubMed  Google Scholar 

  29. Bleich H. Computer evaluation of acid-based disorders. J Clin Invest. 1969;48:1689–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Blois MS. In: Enlander D, editor. Incorporation of clinical laboratory information systems into the hospital information system. New York: Academic; 1975.

    Google Scholar 

  31. Blomberg DJ, Ladley JL, Fattu JM, Patrick EA. The use of an expert system in the clinical laboratory as an aid in the diagnosis of anemia. Am J Clin Pathol. 1987;87:608–13.

    CAS  PubMed  Google Scholar 

  32. Blum BI. A history of computers. In: Blum B, editor. Clinical information systems. New York: Springer; 1986. p. 1–32.

    Google Scholar 

  33. Bollinger PB, Drewinko B, Brailas CD, Smeeton NA, Trujillo JM. The technicon H* 1 – an automated hematology analyzer for today and tomorrow. Complete blood count parameters. Am J Clin Pathol. 1987;87:71–8.

    CAS  PubMed  Google Scholar 

  34. Brient K. Barcoding facilitates patient-focused care. Healthc Inform. 1995;12:38. 40, 42.

    CAS  PubMed  Google Scholar 

  35. Brittin GM. The impact of automation in hematology on patient care. New York: Technicon International Congress; 1972.

    Google Scholar 

  36. Bronzino JD. Computerization concepts in the clinical laboratory. In: Bronzino JD, editor. Computer applications for patient care. Menlo Park: Addison-Wesley; 1982. p. 117–37.

    Google Scholar 

  37. Bronzino JD. Computers and patient care. In: Bronzino JD, editor. Technology for patient care. Saint Louis: C.V. Mosby; 1977. p. 57–102.

    Google Scholar 

  38. BSL. Berkeley Scientific Laboratories. A study of automated clinical laboratory systems: US health services and mental health administration. Available from National Technical Information Service, Springfield; 1971.

    Google Scholar 

  39. Buchanan NS. Evolution of a hospital information system. Proc SCAMC. 1980;1:34–6.

    Google Scholar 

  40. Bull BS, Korpman RA. The clinical laboratory computer-system-who is it for? Arch Pathol Lab Med. 1980;104:449–51.

    Google Scholar 

  41. Bush IE. Trouble with medical computers. Perspect Biol Med. 1979;600–20.

    Google Scholar 

  42. Clark WA, Molnar CE. A description of the LINC. In: Stacy RW, Waxman BD, editors. Computers in biomedical research, vol. II. New York: Academic; 1965. p. 35–65.

    Google Scholar 

  43. Clark JS, Veasley LG, Jung AL, Jenkins JL. Automated PO2, PCO2, and pH monitoring of infants. Comp Biomed Res. 1971;4:262–74.

    Google Scholar 

  44. Collen MF, Rubin L, Davis L. Computers in multiphasic screening. In: Stacy RW, Waxman BD, editors. Computers in biomedical research, vol. I. New York: Academic; 1965.

    Google Scholar 

  45. Collen MF. The Permanente Medical Group and the Kaiser Foundation Research Institute. In: McLean ER, Soden JV, editors. Strategic planning for MIS. New York: Wiley; 1977. p. 257–71.

    Google Scholar 

  46. Collen MF. Machine diagnosis from a multiphasic screening program. Proc of 5th IBM Medical Symposium; 1963. p. 1–23.

    Google Scholar 

  47. Collen MF. Multiphasic health testing services. New York: Wiley; 1978.

    Google Scholar 

  48. Collen MF. Periodic health examinations using an automated multitest laboratory. JAMA. 1966;195:830–3.

    Article  CAS  PubMed  Google Scholar 

  49. Collen MF, Terdiman JF. Technology of multiphasic patient screening. Annu Rev Biophys Bioeng. 1973;2:103–14.

    Article  CAS  PubMed  Google Scholar 

  50. Collen MF, Rubin L, Neyman J, Dantzig GB, Baer RM, Siegelaub AB. Automated multiphasic screening and diagnosis. Am J Public Health Nation Health. 1964;54:741–50.

    Article  CAS  Google Scholar 

  51. Collen MF, Feldman R, Sieglaub AB, Crawford D. Dollar cost per positive text for automated multiphasic screening. New Engl J Med. 1970;283(9):459–63.

    Google Scholar 

  52. Connelly D. Communicating laboratory results effectively; the role of graphical displays. Proc AAMSI Cong. 1983;113–5.

    Google Scholar 

  53. Connelly DP. Embedding expert systems in laboratory information systems. Am J Clin Pathol. 1990;94:S7–14.

    CAS  PubMed  Google Scholar 

  54. Connelly DP, Willard KE. Monte Carlo simulation and the clinical laboratory. Arch Pathol Lab Med. 1989;113:750–7.

    CAS  PubMed  Google Scholar 

  55. Connelly DP, Sielaff BH, Scott EP. ESPRE – expert system for platelet request evaluation. Am J Clin Pathol. 1990;94:S19–24.

    CAS  PubMed  Google Scholar 

  56. Connelly DP, Glaser JP, Chou D. A structured approach to evaluating and selecting clinical laboratory information systems. Pathologists. 1984;38:714–20.

    CAS  Google Scholar 

  57. Connelly DP, Gatewood LC, Chou DC. Computers in laboratory medicine and pathology. An educational program. Arch Pathol Lab Med. 1981;105:59.

    CAS  PubMed  Google Scholar 

  58. Constandse WJ. The use of a computer installation for a general purpose laboratory information system. Proc of the 6th IBM Medical Symposium. 1964. p. 495–544.

    Google Scholar 

  59. Cordle F, Boltjes BH. Electronic data logging and statistical evaluation in medical microbiology. Proc of the San Diego Biomedical Symposium. 1962;2:100.

    Google Scholar 

  60. Coutts A, Hjelm VJ, Kingsley GR, Betz GP. Multiple laboratory testing in a large federal hospital. Autom Anal Chem. 1968;1:151.

    Google Scholar 

  61. Cunnick WR, Cromie JB, Cortell R. Value of biochemical profiling in a periodic health examination program: analysis of 1000 cases. In: Davies DF, Tchobanoff JB, editors. Health evaluation: an entry to the health care system. New York: Intercontinental Medical Book Corp; 1973. p. 172–88.

    Google Scholar 

  62. Cutler JL, Collen MF, Siegelaub AB, Feldman R. Normal values for multiphasic screening blood chemistry tests. Adv Autom Anal. 1969;3:71.

    Google Scholar 

  63. Dayhoff RE, Ledley RS, Zeller JA, Park CM, Shiu MR. Platelet aggregation studies using TEXAC whole picture analysis. Proc SCAMC. 1978;31–6.

    Google Scholar 

  64. Debauche R, De Laey P. Evaluation of the Hemalog D system in a hospital clinical laboratory. In: Barton EC, editor. Advances in automated analysis. Tarrytown: Mediad; 1976. p. 294–311.

    Google Scholar 

  65. Demuth AI. Automated ICD-9-CM coding: an inevitable trend to expert systems. Health Care Commun. 1985;2:62–5.

    Google Scholar 

  66. Dinio RC, Ramirez G, Pribor HC. Pattern recognition of SMA 12 values as a diagnostic tool. In: Barton ED, et al., editors. Advances in automated analysis. Miami: Thurman Associates; 1970. p. 201–9.

    Google Scholar 

  67. Dorenfest SI. The decade of the 1980s: large expenditures produce limited progress in hospital automation. US Healthc. 1989;6:20–2.

    CAS  PubMed  Google Scholar 

  68. Dove HG, Hierholzer Jr W. An integrated, microcomputer based infection control system. Proc MEDINFO. 1986;486–7.

    Google Scholar 

  69. Drewinko B, Wallace B, Flores C, Crawford RW, Trujillo JM. Computerized hematology: operation of a high-volume hematology laboratory. Am J Clin Pathol. 1977;67:64–76.

    CAS  PubMed  Google Scholar 

  70. Dutcher TF, Desmond SA, Greenfield L. A computer program for use in the evaluation of multichannel laboratory instruments. Am J Clin Pathol. 1971;55:302.

    CAS  PubMed  Google Scholar 

  71. Dutcher TF, Benzel JE, Egan JJ, Hart DJ, Christopher EA. Evaluation of an automated differential leukocyte counting system. I. Instrument description and reproducibility studies. Am J Clin Pathol. 1974;62:525.

    CAS  PubMed  Google Scholar 

  72. Egan JJ, Benzel JE, Hart DJ, Christopher EA. Evaluation of an automated differential leukocyte counting system. 3. Detection of abnormal cells. Am J Clin Pathol. 1974;62:537–44.

    CAS  PubMed  Google Scholar 

  73. Eggert AA, Emmerich KA, Spiegel CA, Smulka GJ, Horstmeier PA, Weisensel MJ. The development of a third generation system for entering microbiology data into a clinical laboratory information system. J Med Syst. 1988;12:365–82.

    Article  CAS  PubMed  Google Scholar 

  74. Elbert EE, O’Connor M. Combined use of the Hamalog 8 and hemalog D online to a laboratory computer system. In: Barton EC, editor. Advances in automated analysis. Tarrytown: Mediad; 1976. p. 365–75.

    Google Scholar 

  75. Elevitch FR, Boroviczeny KG. A proposed international standard for interlaboratory information exchange. Arch Pathol Lab Med. 1985;109:496–8.

    CAS  PubMed  Google Scholar 

  76. Enlander D. Computer data processing of medical diagnoses in pathology. Am J Clin Pathol. 1975;63:538–44.

    CAS  PubMed  Google Scholar 

  77. Esterhay Jr R, Foy JL, Lewis TL. Hospital information systems: approaches to screen definition: compartive anatomy of the PROMIS, NIH and Duke systems. Proc SCAMC. 1982;903–11.

    Google Scholar 

  78. Evans RS, Gardner RM, Burke JP, Pestotnik SL, Larsen RA, Classen DC, et al. A computerized approach to monitor prophylactic antibiotics. Proc SCAMC. 1987;241–5.

    Google Scholar 

  79. Evans RS, Larsen RA, Burke JP, Gardner RM, Meier FA, Jacobson JA, et al. Computer surveillance of hospital-acquired infections and antibiotic use. JAMA. 1986;256:1007–11.

    Article  CAS  PubMed  Google Scholar 

  80. Evenson MA, Hicks GP, Keenan JA, Larson FC. Application of an online data acquisition system using the LINC computer in the clinical chemistry laboratory. In; Automation in analytical chemistry. White Plains: Mediad; 1968. p. 137–40.

    Google Scholar 

  81. Fetter RR, Mills RE. A micro computer based medical information system. Proc 2nd Annual WAMI Meeting. 1979. p. 388–91.

    Google Scholar 

  82. Forrey AW, McDonald CJ, DeMoor G, Huff SM, Leavelle D, Leland D, et al. Logical observation identifier names and codes (LOINC) database: a public use set of codes and names for electronic reporting of clinical laboratory test results. Clin Chem. 1996;42:81–90.

    CAS  PubMed  Google Scholar 

  83. Frey R, Girardi S, Wiederhold G. A filing system for medical research. Int J Biomed Comput. 1971;2:1–26.

    Google Scholar 

  84. Friedman BA. Informating, not automating, the medical record. J Med Syst. 1989;13:221–5.

    Article  CAS  PubMed  Google Scholar 

  85. Friedman RB, Bruce D, MacLowry J, Brenner V. Computer-assisted identification of bacteria. Am J Clin Pathol. 1973;395–403.

    Google Scholar 

  86. Gall J. In: van Egmond J, de Vries Robbe PF, Levy AH, editors. Computerized hospital information system cost-effectiveness: a case study. Amsterdam: North Holland; 1976. p. 281–93.

    Google Scholar 

  87. Gall J. Cost-benefit analysis: total hospital informatics. In: Koza RC, editor. Health information systems evaluation. Boulder: Colorado Associated University Press; 1974. p. 299–327.

    Google Scholar 

  88. Gardner RM, Pryor TA, Warner HR. The HELP hospital information system: update 1998. Int J Med Inform. 1999;54:169–82.

    Article  CAS  PubMed  Google Scholar 

  89. Gardner RM, Pryor TA, Clayton PD, Evans RS. Integrated computer network for acute patient care. Proc SCAMC. 1984;185–8.

    Google Scholar 

  90. Genre CF. Using the computer to manage change in the clinical pathology lab. In: Ball MJ et al., editors. Healthcare information management systems. New York: Springer; 1995. p. 267–82.

    Chapter  Google Scholar 

  91. Giebink GA, Hurst LL. Computer projects in health care. Ann Arbor: Health Administration Press; 1975.

    Google Scholar 

  92. Gralnick HR, Abrams E, Griveber H, Koziol J. Evaluation of the hemalog system. In: Advances in automated analyses. Proc Technicon International Congress 1972. Tarrytown: Mediad; 1972. p. 9–14.

    Google Scholar 

  93. Grams RR, Johnson EA, Benson ES. Laboratory data analysis system. VI. System summary. Am J Clin Pathol. 1972;58:216–9.

    CAS  PubMed  Google Scholar 

  94. Grams RR, Thomas RG. Cost analysis of a laboratory information system (LIS). J Med Syst. 1977;1:27–36.

    Article  CAS  PubMed  Google Scholar 

  95. Grams RR. Medical information systems: the laboratory module. Clifton: Humana Press; 1979.

    Book  Google Scholar 

  96. Greenes RA, Pappalardo AN, Marble CW, Barnett GO. Design and implementation of a clinical data management system. Comput Biomed Res. 1969;2:469–85.

    Article  CAS  PubMed  Google Scholar 

  97. Greenes RA, Barnett GO, Klein SW, Robbins A, Prior RE. Recording, retrieval and review of medical data by physician-computer interaction. N Engl J Med. 1970;282:307–15.

    Article  CAS  PubMed  Google Scholar 

  98. Greenhalgh PJ, Mulholland SG. An automated infection surveillance system. Hospitals. 1972;46:66. passim.

    PubMed  Google Scholar 

  99. Grossman JH, Barnet GO, McGuire MT, Swedlow DB. Evaluation of computer-acquired patient histories. JAMA. 1971;215:1286–91.

    Article  CAS  PubMed  Google Scholar 

  100. Grossman JH, Barnett GO, Koepsell TD, Nesson HR, Dorsey JL, Phillips RR. An automated medical record system. JAMA. 1973;224:1616–21.

    Article  CAS  PubMed  Google Scholar 

  101. Groves WE, Gajewski WH. Use of a clinical laboratory computer to warn of possible drug interference with test results. Proc of the 16th annual Southeast regional conference. 1978. p. 192–200.

    Google Scholar 

  102. Hammond WE. GEMISCH. A minicomputer information support system. Proc IEEE. 1973;61:1575–83.

    Article  Google Scholar 

  103. Hammond WE, Stead WW, Straube MJ. Planned networking for medical information systems. Proc SCAMC. 1985;727–31.

    Google Scholar 

  104. Hammond WE, Stead WW, Straube MJ. An interface between a hospital information system and a computerized medical record. Proc SCAMC. 1980;3:1537–40.

    Google Scholar 

  105. Haug HH, Muller H, Schneider W. Comparative study of differential white cell counting with histochemical (Hemalog D) and morphologic methods. In: Barton EC, editor. Advances in automated analysis. Proc Technicon International Congress. Tarrytown: Mediad; 1977. p. 325–9.

    Google Scholar 

  106. Healy JC, Spackman KA, Beck JR. Small expert systems in clinical pathology: are they useful? Arch Pathol Lab Med. 1989;113:981–3.

    CAS  PubMed  Google Scholar 

  107. Hicks GP. Chip technology. Its influence on the distribution of laboratory data and procedures in the 1980s. Arch Pathol Lab Med. 1981;105:341.

    CAS  PubMed  Google Scholar 

  108. Hodge MH. Medical information systems: a resource for hospitals. Germantown: Aspen Publishers; 1977.

    Google Scholar 

  109. Hosty TA, Lundberg GD, Krieg AF, Marquardt VC, Sinton EB, Wertman B. So a laboratory computer system sounds like a good idea? Pathologists. 1979;33:293–6.

    CAS  Google Scholar 

  110. Hripcsak G, Allen B, Cimino JJ, Lee R. Access to data: comparing AccessMed with query by review. J Am Med Inform Assoc. 1996;3:288–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Jacobs H. A natural language information retrieval system. Methods Inf Med. 1968;7:8.

    CAS  PubMed  Google Scholar 

  112. Johns CJ, Simborg DW, Blum BI, Starfield BH. A minirecord: an aid to continuity of care. Johns Hopkins Med J. 1977;140:277–84.

    CAS  PubMed  Google Scholar 

  113. Jorgensen JH, Holmes P, Williams WL, Harris JL. Computerization of a hospital clinical microbiology laboratory. Am J Clin Pathol. 1978;69:605–14.

    CAS  PubMed  Google Scholar 

  114. Jungner I, Jungner G. The autochemist as a laboratory screening instrument. In: Benson ES, Strandjord PE, editors. Multiple laboratory screening. New York: Academic; 1969. p. 71–9.

    Google Scholar 

  115. Karcher RE, Foreback CC. A comparison of selected SMAC channels to other commonly utilized laboratory instruments. In: Barton EC et al., editors. Advances in automated analysis. Proc Technicon International Congress. Tarrytown: Mediad; 1977. p. 191–6.

    Google Scholar 

  116. Kassirer JP, Brand DH, Schwartz WB. An automated system for data processing in the metabolic balance laboratory. Comput Biomed Res. 1971;4:181–96.

    Article  CAS  PubMed  Google Scholar 

  117. Klee GG, Cox C, Purnell D, Kao P. Use of reference data in the interpretation of parathyroid hormone measurements. Proc SCAMC. 1984;398–1.

    Google Scholar 

  118. Klee GG, Ackerman E, Elveback LR, Gatewood LC, Pierre RV, O’Sullivan M. Investigation of statistical decision rules for sequential hematologic laboratory tests. Am J Clin Pathol. 1978;69:375–82.

    CAS  PubMed  Google Scholar 

  119. Krause JR. Automated differentials in the hematology laboratory. Am J Clin Pathol. 1990;93:S11–6.

    CAS  PubMed  Google Scholar 

  120. Kuperman GJ, Gardner RM, Pryor TA. The pharmacy application of the HELP system. In: Kuperman GJ, Gardner RM, Pryor TA, editors. HELP: a dynamic hospital information system. New York: Springer; 1991. p. 168–72.

    Chapter  Google Scholar 

  121. Kuperman GJ, Jonathan M, Tanasijevic MJ, Ma’Luf N, Rittenberg E, Jha A, et al. Improving response to critical laboratory results with automation results of a randomized controlled trial. J Am Med Inform Assoc. 1999;6:512–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Lamson BG. Mini-computers and large central processors from a medical record management point of view. International Symposium on Medical Information Systems. 1975. p. 58–65.

    Google Scholar 

  123. Lamson BG, Russell WS, Fullmore J, Nix WE. The first decade of effort: progress toward a hospital information system at the UCLA Hospital, Los Angeles, California. Methods Inf Med. 1970;9:73–80.

    CAS  PubMed  Google Scholar 

  124. Lamson BG. Storage and retrieval of medical diagnostic statements in full English text. Proceedings of the First Conference on the Use of Computers in Radiology. 1966. p. D34–43.

    Google Scholar 

  125. Lamson BG. Computer assisted data processing in laboratory medicine. In: Stacy RW, Waxman BD, editors. Computers in biomedical research. New York: Academic; 1965. p. 353–76.

    Google Scholar 

  126. Levine JB. SMA II: the quiet revolution. Advances in automated analysis. Proc Technicon International Congress. Tarrytown: Mediad; 1977. p. 112–20.

    Google Scholar 

  127. Lewis JW. Commentary: clinical laboratory information systems. Proc IEEE. 1979;67:1299–300.

    Article  Google Scholar 

  128. Lewis JW, Marr JJ. Use of a small laboratory computer for identification of the Enterobacteriaceae. J Med Syst. 1977;1:23–6.

    Article  Google Scholar 

  129. Lincoln TL. Health care and the sociotechnical workplace. Arch Pathol Lab Med. 1986;110:306–7.

    CAS  PubMed  Google Scholar 

  130. Lincoln TL. Computers in the clinical laboratory: what we have learned. Med Instrum. 1978;12:233–6.

    CAS  PubMed  Google Scholar 

  131. Lincoln TL, Aller RD. Acquiring a laboratory computer system. Vendor selection and contracting. Clin Lab Med. 1991;11:21–40.

    CAS  PubMed  Google Scholar 

  132. Lincoln T. An historical perspective on clinical laboratory systems. In: Blum BI, Duncan KA, editors. A history of medical informatics. New York: Addison-Wesley; 1990. p. 267–77.

    Google Scholar 

  133. Lincoln TL. Hospital information systems what lies behind friendliness and flexibility? Inform Health Soc Care. 1984;9:255–63.

    Article  CAS  Google Scholar 

  134. Lincoln TL. Medical information science: a joint endeavor. JAMA. 1983;249:610–2.

    Article  CAS  PubMed  Google Scholar 

  135. Lincoln TL, Korpman RA. Computers, health care, and medical information science. Science. 1980;210:257–63.

    Article  CAS  PubMed  Google Scholar 

  136. Lindberg D. Impact of public policy on the development, adoption, and diffusion of medical information systems technology. Washington, DC: U.S. Govt. Print. Office; 1978.

    Google Scholar 

  137. Lindberg D. The computer and medical care. Springfield: CC Thomas; 1968.

    Google Scholar 

  138. Lindberg D. Electronic retrieval of clinical data. J Med Educ. 1965;40:753–9.

    CAS  PubMed  Google Scholar 

  139. Lindberg D. Operation of a hospital computer system. J Am Vet Med Assoc. 1965;147:1541–4.

    CAS  PubMed  Google Scholar 

  140. Lindberg D. A computer in medicine. Mo Med. 1964;61:282–4.

    CAS  PubMed  Google Scholar 

  141. Lindberg D, Reese GR. Automatic measurement and computer processing of bacterial growth data. Biomedical sciences instrumentation. Proc of the 1st National Biomedical Sciences Instrumentation Symposium. 1963. p. 11–20.

    Google Scholar 

  142. Lindberg DA, Van Pelnan HJ, Couch HD. Patterns in clinical chemistry. Am J Clin Pathol. 1965;44:315–21.

    Google Scholar 

  143. Lindberg D, Gaston LW, Kingsland LC. A knowledge-based system for consultation about blood coagulation studies. In: The human side of computers in medicine. Proc Soc for Computer Med 10th Annual Conf. 1980. p. 5.

    Google Scholar 

  144. Lindberg D, Vanpeenen HJ, Couch RD. Patters in clinical chemistry. Low serum sodium and chloride in hospitalized patients. Am J Clin Pathol. 1965;44:315–21.

    CAS  PubMed  Google Scholar 

  145. Lindberg D, Reese GR, Buck C. Computer generated hospital diagnosis file. Mo Med. 1964;61:581. 2 PASSIM.

    CAS  PubMed  Google Scholar 

  146. Lucas FV, Lincoln TL, Kinney TD. Clinical laboratory science. A look to the future. Lab Investig. 1969;20:400–4.

    CAS  PubMed  Google Scholar 

  147. Lupovitch A, Memminger J, Corr RM. Manual and computerized cumulative reporting systems for the clinical microbiology laboratory. Am J Clin Pathol. 1979;72:841–7.

    CAS  PubMed  Google Scholar 

  148. Lyman M, Chi E, Sager N. Automated case review of acute bacterial meningitis of childhood. Proc MEDINFO. 1983;790–3.

    Google Scholar 

  149. Maturi VF, DuBois RM. Recent trends in computerized medical information systems for hospital departments. Proc SCAMC.1980;3:1541–49.

    Google Scholar 

  150. McClure S, Bates JE, Harrison R, Gilmer PR, Bessman JD. The “diff-if”. Use of microcomputer analysis to triage blood specimens for microscopic examination. Am J Clin Pathol. 1988;90:163–8.

    CAS  PubMed  Google Scholar 

  151. McColligan E, Blum B, Brunn C. An automated care medical record system for ambulatory care. Proc SCM/SAMS Joint Conf on Ambulatory Care. 1981. p. 72–6.

    Google Scholar 

  152. McDonald CJ. The medical gopher: a microcomputer based physician work station. Proc SCAMC. 1984;453–9.

    Google Scholar 

  153. McDonald CJ. Action-oriented decisions in ambulatory medicine. Chicago: Year Book Medical Publishers; 1981.

    Google Scholar 

  154. McDonald CJ, Tierney WM. Computer-stored medical records: their future role in medical practice. JAMA. 1988;259:3433–40.

    Article  CAS  PubMed  Google Scholar 

  155. McDonald CJ, Murray R, Jeris D, et al. A computer-based record and clinical monitoring system for ambulatory care. Am J Public Health. 1977;67:240–5.

    Google Scholar 

  156. McDonald CJ, Wilson G, Blevins L, Seeger J, et al. The Regenstrief medical record system. Proc SCAMC. 1977;168-9.

    Google Scholar 

  157. McDonald CJ, Overhage JM, Tierney WM, et al. The Regenstrief medical record system: a quarter century experience. Int J Med Inform. 1999;54:225–53.

    Google Scholar 

  158. McHenry LE, Parker PK, Branch B. Simultaneous platelet counts, in conjunction with Hemalog D analyses, utilizing the Technicon AutoCounter system. Advances in Automated Analysis. Proc Technicon International Congress. Tarrytown: Mediad; 1977. p. 376–80.

    Google Scholar 

  159. McLaughlin. Alphanumeric display terminal survey. Datamation. 1973;20:71–92.

    Google Scholar 

  160. Michalski RS, Baskin AB, Spackman KA. A logic-based approach to conceptual data base analysis. Inform Health Soc Care. 1983;8:187–95.

    Article  CAS  Google Scholar 

  161. Miller R, Causey J, Moore G, Wilk G. Development and operation of a MUMPS laboratory information system: a decade’s experience. Proc SCAMC. 1988;654–8.

    Google Scholar 

  162. Miller RE, Steinbach GL, Dayhoff RE. A hierarchical computer network: an alternative approach to clinical laboratory computerization in a large hospital. Proc SCAMC. 1980;32–8.

    Google Scholar 

  163. Morey R, Adams MC, Laga E. Factors to be considered in computerizing a clinical chemistry department of a large city hospital. Proc AFIPS. 1971;477–90.

    Google Scholar 

  164. Myers J, Gelblat M, Enterline HT. Automatic encoding of pathology data. Computer-readable surgical pathology data as a by-product of typed pathology reports. Arch Pathol. 1970;89:73.

    CAS  PubMed  Google Scholar 

  165. Neeley WE. Computer calculation of electronic platelet counts. Am J Clin Pathol. 1972;58:33–6.

    CAS  PubMed  Google Scholar 

  166. Newald J. Hospitals look to computerization of physician office linkage. Hospitals. 1987;61:92–4.

    Google Scholar 

  167. Norbut AM, Foulis PR, Krieg AF. Microcomputer reporting and information system for microbiology. Am J Clin Pathol. 1981;76:50–6.

    CAS  PubMed  Google Scholar 

  168. O’Connor M, McKinney T. The diagnosis of microcytic anemia by a rule-based expert system using VP-Expert. Arch Pathol Lab Med. 1989;113:985–8.

    PubMed  Google Scholar 

  169. Okubo RS, Russell WS, Dimsdale B, Lamson BG. Natural language storage and retrieval of medical diagnostic information: experience at the UCLA hospital and clinics over a 10-year period. Comput Prog Biomed. 1975;5:105–30.

    Article  CAS  Google Scholar 

  170. Polacsek RA. The fourth annual medical software buyer’s guide. MD Comput. 1987;4:23–136.

    CAS  PubMed  Google Scholar 

  171. Pratt AW, Pacak M. Automatic processing of medical english. Reprinted by US Dept HEW, NIH 1969; 1969a.

    Google Scholar 

  172. Pratt AW, Pacak M. Identification and transformation of terminal morphemes in medical English. Methods Inf Med. 1969;8:84–90.

    CAS  PubMed  Google Scholar 

  173. Pryor TA. A note on filtering electrocardiograms. Comput Biomed Res. 1971;4(5):542–7.

    Google Scholar 

  174. Quam K. The DNA, automated clinical laboratory system. Am J Med Technol. 1975;41:228–31.

    CAS  PubMed  Google Scholar 

  175. Rappaport AE, Gennaro WD. The economics of computer-coupled automation in the clinical chemistry department of the Youngstown Hospital Association. In: Stacy RW, Waxman BD, editors. Computers in biomedical research. New York: Academic Press; 1974. p. 215–24.

    Google Scholar 

  176. Ratliff CR, Casey AE, Kelly J. Use of the SMA 4 AutoAnalyzer in a central hematology service. Automation in analytical chemistry. Proc Technicon Symposium. Whites Plains: Mediad; 1968. p. 193–9.

    Google Scholar 

  177. Raymond S. Criteria in the choice of a computer system. I. The computer in theory. JAMA. 1974;228:591–4.

    Article  CAS  PubMed  Google Scholar 

  178. Raymond S. Criteria in the choice of a computer system. II. The computer in practice. JAMA. 1974;228:1015–7.

    Article  CAS  PubMed  Google Scholar 

  179. Reece RL, Hobbie RK. Computer evaluation of chemistry values: a reporting and diagnostic aid. Am J Clin Pathol. 1972;57:664–75.

    CAS  PubMed  Google Scholar 

  180. Robinson III RE. Acquisition and analysis of narrative medical record data. Comput Biomed Res. 1970;3:495–509.

    Article  PubMed  Google Scholar 

  181. Rodbard D, Jaffe M, Beveridge M, Pernick N. A data management program to assist with home monitoring of blood glucose and self adjustment of insulin dosage for patients with diabetes mellitus and their physicians. Proc SCAMC. 1984;321–4.

    Google Scholar 

  182. Rosner SW, Palmer A, Caceres CA. A computer program for computation and interpretation of pulmonary function data. Comput Biomed Res. 1971;4:141–56.

    Article  CAS  PubMed  Google Scholar 

  183. Rosvoll RV, Mengason AP, Smith L, Patel HJ, Maynard J, Connor F. Visual and automated differential leukocyte counts. A comparison study of three instruments. Am J Clin Pathol. 1979;71:695–703.

    CAS  PubMed  Google Scholar 

  184. Rowberg A, Lee S. Use of a desk-top calculator to interpret acid-base data. Am J Clin Pathol. 1973;59:180.

    CAS  PubMed  Google Scholar 

  185. Rush RL, Nabb DP. Bringing it all together on three SMAC systems. In: Barton EC, editor. Advances in automated analysis. Proc Technicon Congress. Tarrytown: Mediad; 1977. p. 376–80.

    Google Scholar 

  186. Salwen M, Wallach J. Interpretative analysis of hematologic data using a combination of decision making technologies. MEDCOMP. 1982;3:428.

    Google Scholar 

  187. Schoentag RA, Pedersen JT. Evaluation of an automated blood smear analyzer. Am J Clin Pathol. 1979;71:685–94.

    CAS  PubMed  Google Scholar 

  188. Schultz JR, Davis L. The technology of PROMIS. Proc IEEE. 1979;67:1237–44.

    Article  Google Scholar 

  189. Seligson D. Observations regarding laboratory instrumentation and screening analysis. In: Benson ES, Strandjord PE, editors. Multiple laboratory screening. New York: Academic; 1969. p. 87–119.

    Google Scholar 

  190. Shieman BM. Medical information system, El Camino Hospital. IMS Ind Med Surg. 1971;40:25–6.

    CAS  PubMed  Google Scholar 

  191. Shim H, Uh Y, Lee SH, Yoon YR. A new specimen management system using RFID technology. J Med Syst. 2011;35:1403–12.

    Article  PubMed  Google Scholar 

  192. Siegel SJ. Developing an information system for a hospital. Public Health Rep. 1968;83:359–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  193. Simborg DW, Macdonald LK, Liebman JS, Musco P. Ward information-management system: an evaluation. Comput Biomed Res. 1972;5:484–97.

    Article  CAS  PubMed  Google Scholar 

  194. Simmons A, Schwabbauer M, Earhart C. A fully automated platelet counting apparatus. In: Advances in automated analysis. Proc Technicon International Congress. Miami: Thurman Associates. 1971. p. 413–5.

    Google Scholar 

  195. Skeggs LT. An automatic method for colorimetric analysis. Am J Clin Pathol. 1957;28:311–22.

    CAS  PubMed  Google Scholar 

  196. Skeggs LT, Hochstrasser H. Multiple automatic sequential analysis. Clin Chem. 1964;10:918–36.

    CAS  PubMed  Google Scholar 

  197. Slack WV, Bleich HL. The CCC system in two teaching hospitals: a progress report. Int J Med Inform. 1999;54:183–96.

    Article  CAS  PubMed  Google Scholar 

  198. Smith Jr JW, Svirbely JR. Laboratory information systems. MD Comput. 1988;5:38–47.

    Google Scholar 

  199. Smith Jr JW, Speicher CE, Chandrasekaran B. Expert systems as aids for interpretive reporting. J Med Syst. 1984;8:373–88.

    Article  PubMed  Google Scholar 

  200. Smith Jr JW, Svirbely JR, Evans CA, Strohm P, Josephson JR, Tanner M. RED: a red-cell antibody identification expert module. J Med Syst. 1985;9:121–38.

    Article  PubMed  Google Scholar 

  201. Smith JW, Svirbely JR. Laboratory information systems. In: Shortliffe EH, Perreault LE, editors. Medical informatics: computer applications in health care. Reading: Addison-Wesley; 1990. p. 273–97.

    Google Scholar 

  202. Smythe WJ, Shamos MH, Morgenstern S, Skeggs LT. SMA 12/60: a new sequential multiple analysis instrument. Automation in analytical chemistry. Proc Technicon Symposium. White Plains: Mediad; 1968. p. 105–13.

    Google Scholar 

  203. Sneider RM. Using a medical information system to improve the quality of patient care. Proc SCAMC. 1978;594–7.

    Google Scholar 

  204. Snyder LR, Leon LP. New chemical methods for SMAC. In: Barton EC, editor. Advances in automated analysis. Tarrytown: Mediad; 1977. p. 186–90.

    Google Scholar 

  205. Speedie SM, Palumbo FB, Knapp DA, Beardsley R. Evaluating physician decision making: a rule-based system for drug prescribing review. Proc MEDCOMP. 1982;404–8

    Google Scholar 

  206. Speedie SM, Skarupa S, Blaschke TF, Kondo J, Leatherman E, Perreault L. MENTOR: integration of an expert system with a hospital information system. Proc SCAMC. 1987;220–4.

    Google Scholar 

  207. Speicher CE, Smith JW. Communication between laboratory and clinician: test requests and interpretive reports. In: Speicher CE, Smith JW, editors. Choosing effective laboratory tests. Philadelphia: Saunders; 1983. p. 93–108.

    Google Scholar 

  208. Speicher CE, Smith JW. Interpretive reporting in clinical pathology. JAMA. 1980;243:1556–60.

    Article  CAS  PubMed  Google Scholar 

  209. Spencer WA. An opinion survey of computer applications in 149 hospitals in the USA, Europe and Japan. Inform Health Soc Care. 1976;1:215–34.

    Article  Google Scholar 

  210. Stacy RW, Waxman BD. Computers in biomedical research. New York: Academic; 1974.

    Google Scholar 

  211. Stauffer M, Clayson KJ, Roby RJ, Strandjord PE. A computer-assisted system: thyroid disease. Am J Clin Pathol. 1974;62:766–74.

    CAS  PubMed  Google Scholar 

  212. Stead WW, Hammond WE. Computer-based medical records: the centerpiece of TMR. MD Comput. 1988;5:48–62.

    CAS  PubMed  Google Scholar 

  213. Stead WW, Hammond WE, Winfree RG. Beyond a basic HIS: work stations for department management. Proc SCAMC. 1984; 197–9.

    Google Scholar 

  214. Steinbach G, Miller R. A dual processor standard MUMPS system with load-sharing and provision for rapid hardware backup. MUMPS Users Group Q. 1981;11:32–8.

    Google Scholar 

  215. Sterling RT, O’Connor M, Hopkins 3rd M, Dunlevy BE. Red blood cell antibody identification and confirmation using commercial panels. A computer program for the IBM personal computer. Arch Pathol Lab Med. 1986;110:219–23.

    CAS  PubMed  Google Scholar 

  216. Streed SA, Hierholzer WJ. Analysis of five years’ experience using an on-line infection data management system. Proc MEDINFO. 1986;86:26–30.

    Google Scholar 

  217. Takasugi S, Lindberg D. Information content of clinical blood chemistry data. Proc MedINFO. 1980;432–5.

    Google Scholar 

  218. Talamo TS, Losos 3rd F, Kessler GF. Microcomputer assisted interpretative reporting of protein electrophoresis data. Am J Clin Pathol. 1982;77:726–30.

    CAS  PubMed  Google Scholar 

  219. Taswell HF, Nicholson LL, Cochran ML. Use of a 15-channel blood grouping AutoAnalyzer for patient typing. Technicon International Congress. 1973. p. 57–8.

    Google Scholar 

  220. Tatch D. Automatic encoding of medical diagnoses. 6th IBM Medical Symposium. 1964. p. 1–7.

    Google Scholar 

  221. Teich JM, Glaser JP, Beckley RF, Aranow M, Bates DW, Kuperman GJ, et al. The Brigham integrated computing system (BICS): advanced clinical systems in an academic hospital environment. Int J Med Inform. 1999;54:197–208.

    Article  CAS  PubMed  Google Scholar 

  222. Terdiman JF, Collen MF. Kaiser-Permanente patient computer medical record-past experience and future goals. Proc Assoc Inf Sci. 1976;13:27.

    Google Scholar 

  223. Terdiman JF. Mass random storage devices and their application to a Medical Information System (MIS). Comput Biomed Res. 1970;3:528–38.

    Article  CAS  PubMed  Google Scholar 

  224. Tilzer LL, Jones RW. Use of bar code labels on collection tubes for specimen management in the clinical laboratory. Arch Pathol Lab Med. 1988;112:1200–2.

    CAS  PubMed  Google Scholar 

  225. Tolchin SG, Barta W. Local network and distributed processing issues in the Johns Hopkins Hospital. J Med Syst. 1986;10:339–53.

    Article  CAS  PubMed  Google Scholar 

  226. Ulirsch RC, Ashwood ER, Noce P. Security in the clinical laboratory. Guidelines for managing the information resource. Arch Pathol Lab Med. 1990;114:89–93.

    CAS  PubMed  Google Scholar 

  227. Upton RC, Spaet TH, La Mantia J. Automatic platelet counting with the AutoAnalyer. In; Automation in analytical chemistry. Proc Technicon Symp 1967, Vol 1. White Plains: Mediad; 1967. p. 197–9.

    Google Scholar 

  228. Vallbona C, Spencer WA. Texas institute for research and rehabilitation hospital computer system (Houston). In: Collen MF, editor. Hospital computer systems. New York: Wiley; 1974. p. 662–700.

    Google Scholar 

  229. Vermeulen GD, Schwab SV, Young VM, Hsieh RK. A computerized system for clinical microbiology. Am J Clin Pathol. 1972;57:413–8.

    CAS  PubMed  Google Scholar 

  230. Warner HF. A computer-based information system for patient care. In: Bekey GA, Schartz MD, editors. Hospital information systems. New York: Marcel Dekker; 1972. pp 293–332.

    Google Scholar 

  231. Watson RJ. A large-scale professionally oriented medical information system – five years later. J Med Syst. 1977;1:3–21.

    Article  CAS  PubMed  Google Scholar 

  232. Waxman BD. Biomedical computing: 1965. Ann NY Acad Sci. 1966;128:723–30.

    Google Scholar 

  233. Weant BD. Evaluation of the Technicon B G automated blood grouping systems. Proc 1976 Technicon Internatl Congress. Tarrytown: Mediad; 1977. p. 438–45.

    Google Scholar 

  234. Weed LL. The patient’s record as an extension of the basic science training of the physician; rules for recording data in the clinical record; presentation of case examples and flow sheets. Cleveland: Cleveland Metropolitan General Hospital, School of Medicine, Western Reserve University; 1967.

    Google Scholar 

  235. Weilert M. Implementing an information system. Clin Lab Med. 1983;3:233–50.

    CAS  PubMed  Google Scholar 

  236. Wertlake PT. Integrated hospital and laboratory computer system vital to hospital laboratory. 7th Technicon Internatl Congress 1976. Tarrytown: Mediad; 1977. p. 438–45.

    Google Scholar 

  237. Weschler W, Allens S, Negersmith K. Hemalog: an automated hematology laboratory system. In: Advances in automated analysis. Proc 1970 Technicon Internatl Congress. Miami: Thurman Associates; 1971. p. 431–6.

    Google Scholar 

  238. Williams BT, Foote CF, Galassie C, Schaeffer RC. Augmented physician interactive medical record. Proc MEDINFO. 1989;779–83.

    Google Scholar 

  239. Williams BT, Chen TT, Schultz DF, Moll JD, Flood JR, Elston J. PLATO-based medical information system – variable keyboards. Proc 2nd Conference on Medical Info Systems. 1975. p. 56–61.

    Google Scholar 

  240. Williams BT. Computer aids to clinical decisions. Boca Raton: CRC Press; 1982.

    Google Scholar 

  241. Williams GZ, Williams RL. Clinical laboratory subsystem. In: Collen M, editor. Hospital computer systems. New York: Wiley; 1974. p. 148–93.

    Google Scholar 

  242. Wintrobe MM. The clinicians’ expectation of the laboratory in the remote and recent past and in the future. In: Advances in automated analysis. Proc 1976 Technicon International Congress. Tarrytown: Mediad; 1977. p. 288–93.

    Google Scholar 

  243. Wise WS. Microcomputer infection surveillance system. Proc SCAMC. 1984;215–9.

    Google Scholar 

  244. Wolf PL. Utilization of computers in biochemical profiling. In: Enlander D, editor. Computers in laboratory medicine. New York: Academic; 1975. p. 81–101.

    Google Scholar 

  245. Wolf PL, Ludwig HR, Vallee JF. Progress toward a direct-access hematology data-base. Arch Pathol. 1971;91:542–9.

    CAS  PubMed  Google Scholar 

  246. Yoder RD. Computational augmentation of blood gas measurements. Proceedings of the 1971 26th annual conference. 1971. p. 701–5.

    Google Scholar 

  247. Young EM, Brian EW, Hardy DR, Kaplan A, Childerston JK. Evaluation of automated hospital data management systems (AHDMS). Proc SCAMC. 1980;1:651.

    Google Scholar 

  248. Yountness E, Derwinko B. A computer-based reporting system for bone marrow evaluation. Am J Clin Pathol. 1978;69:333–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Miller M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Collen, M.F., Miller, R.E. (2015). Clinical Laboratory (LAB) Information Systems. In: Collen, M., Ball, M. (eds) The History of Medical Informatics in the United States. Health Informatics. Springer, London. https://doi.org/10.1007/978-1-4471-6732-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6732-7_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6731-0

  • Online ISBN: 978-1-4471-6732-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics