Skip to main content

The Epigenome and Aging

  • Chapter
Environmental Epigenetics

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 1622 Accesses

Abstract

The epigenetics of aging is a relatively new field. Global DNA methylation has been examined for some time; however, only recently have age-related differentially methylated regions been elaborated. These regions encompass genes that in some cases interact with longevity and disease-associated genes. Histone modifications have now become of interest in aging studies. Model organisms have provided substantial evidence that some of the enzymes that are involved in histone modifications play a role in longevity, and direct evidence of such a role for one of the sirtuins has been gathered in mice. A number of studies examining expression of microRNA during aging in various organisms, including human, point to the possibility that these gene regulatory molecules may also be involved in aging. A recent study of one such microRNA in mice substantiates such a role in cardiac aging. All of these epigenetic mechanisms are responsive to environmental and lifestyle factors. Thus, the groundwork has been laid for an understanding of the interface between the genome and the environment that epigenetic mechanisms provide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelmohsen K, Panda A, Kang MJ et al (2013) Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell 12:890–900

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alasaari JS, Lagus M, Ollila HM et al (2012) Environmental stress affects DNA methylation of a CpG rich promoter region of serotonin transporter gene in a nurse cohort. PLoS One 7:e45813

    PubMed Central  CAS  PubMed  Google Scholar 

  • Allen HF, Wade PA, Kutateladze TG (2013) The NuRD architecture. Cell Mol Life Sci 70:3513–3524

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aloia L, Di Stefano B, Di Croce L (2013) Polycomb complexes in stem cells and embryonic development. Development 140:2525–2534

    CAS  PubMed  Google Scholar 

  • Anderson RM, Bitterman KJ, Wood JG et al (2002) Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem 277:18881–18890

    CAS  PubMed  Google Scholar 

  • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423:181–185

    CAS  PubMed  Google Scholar 

  • Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 23:853–859

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anselmi CV, Malovini A, Roncarati R et al (2009) Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 12:95–104

    CAS  PubMed  Google Scholar 

  • Anway MD, Leathers C, Skinner MK (2006a) Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147:5515–5523

    CAS  PubMed  Google Scholar 

  • Anway MD, Memon MA, Uzumcu M, Skinner MK (2006b) Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl 27:868–879

    CAS  PubMed  Google Scholar 

  • Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bagot RC, Zhang TY, Wen X et al (2012) Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proc Natl Acad Sci U S A 109(Suppl 2):17200–17207

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barres R, Yan J, Egan B et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15:405–411

    CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    CAS  PubMed  Google Scholar 

  • Bell JT, Tsai PC, Yang TP et al (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8:e1002629

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Biagi E, Nylund L, Candela M et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5:e10667

    PubMed Central  PubMed  Google Scholar 

  • Bjornsson HT, Sigurdsson MI, Fallin MD et al (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299:2877–2883

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boks MP, Derks EM, Weisenberger DJ et al (2009) The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS One 4:e6767

    PubMed Central  PubMed  Google Scholar 

  • Bollati V, Schwartz J, Wright R et al (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 130:234–239

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boon RA, Seeger T, Heydt S et al (2011) MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res 109:1115–1119

    CAS  PubMed  Google Scholar 

  • Boon RA, Iekushi K, Lechner S et al (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495:107–110

    CAS  PubMed  Google Scholar 

  • Borghol N, Suderman M, McArdle W et al (2012) Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol 41:62–74

    PubMed Central  PubMed  Google Scholar 

  • Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64:1123–1134

    CAS  PubMed  Google Scholar 

  • Brehm A, Tufteland KR, Aasland R, Becker PB (2004) The many colours of chromodomains. Bioessays 26:133–140

    CAS  PubMed  Google Scholar 

  • Breitling LP (2013) Current genetics and epigenetics of smoking/tobacco-related cardiovascular disease. Arterioscler Thromb Vasc Biol 33:1468–1472

    CAS  PubMed  Google Scholar 

  • Brockdorff N (2013) Noncoding RNA, and polycomb recruitment. RNA 19:429–442

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burgess RJ, Zhang Z (2010) Roles for Gcn5 in promoting nucleosome assembly and maintaining genome integrity. Cell Cycle 9:2979–2985

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burgess RJ, Zhou H, Han J, Zhang Z (2010) A role for Gcn5 in replication-coupled nucleosome assembly. Mol Cell 37:469–480

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burnett C, Valentini S, Cabreiro F et al (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buro-Auriemma LJ, Salit J, Hackett NR et al (2013) Cigarette smoking induces small airway epithelial epigenetic changes with corresponding modulation of gene expression. Hum Mol Genet 22:4726–4738

    PubMed Central  CAS  PubMed  Google Scholar 

  • Calvanese V, Lara E, Kahn A, Fraga MF (2009) The role of epigenetics in aging and age-related diseases. Ageing Res Rev 8:268–276

    CAS  PubMed  Google Scholar 

  • Campos EI, Fillingham J, Li G et al (2010) The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 17:1343–1351

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cantone I, Fisher AG (2013) Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 20:282–289

    CAS  PubMed  Google Scholar 

  • Cao R, Wang L, Wang H et al (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298:1039–1043

    CAS  PubMed  Google Scholar 

  • Casillas MA Jr, Lopatina N, Andrews LG, Tollefsbol TO (2003) Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol Cell Biochem 252:33–43

    CAS  PubMed  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    CAS  PubMed  Google Scholar 

  • Chen HZ, Wan YZ, Liu DP (2013) Cross-talk between SIRT1 and p66Shc in vascular diseases. Trends Cardiovasc Med 23:237–241

    CAS  PubMed  Google Scholar 

  • Chiacchiera F, Piunti A, Pasini D (2013) Epigenetic methylations and their connections with metabolism. Cell Mol Life Sci 70:1495–1508

    CAS  PubMed  Google Scholar 

  • Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7:436–448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christensen BC, Houseman EA, Marsit CJ et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602

    PubMed Central  PubMed  Google Scholar 

  • Claesson MJ, Cusack S, O’Sullivan O et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl 1):4586–4591

    PubMed Central  CAS  PubMed  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    CAS  PubMed  Google Scholar 

  • Cogswell JP, Ward J, Taylor IA et al (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41

    CAS  PubMed  Google Scholar 

  • Coppe JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    CAS  PubMed  Google Scholar 

  • Cosentino C, Mostoslavsky R (2013) Metabolism, longevity and epigenetics. Cell Mol Life Sci 70:1525–1541

    PubMed Central  CAS  PubMed  Google Scholar 

  • Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111:185–196

    CAS  PubMed  Google Scholar 

  • D’Aquila P, Rose G, Bellizzi D, Passarino G (2013) Epigenetics and aging. Maturitas 74:130–136

    PubMed  Google Scholar 

  • Dai J, Hyland EM, Norris A, Boeke JD (2010) Yin and Yang of histone H2B roles in silencing and longevity: a tale of two arginines. Genetics 186:813–828

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dang W, Steffen KK, Perry R et al (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L et al (2013) High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell 12:446–458

    PubMed Central  CAS  PubMed  Google Scholar 

  • Denis H, Ndlovu MN, Fuks F (2011) Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep 12:647–656

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508

    CAS  PubMed  Google Scholar 

  • Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114:567–572

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104:13056–13061

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dou Y, Milne TA, Tackett AJ et al (2005) Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121:873–885

    CAS  PubMed  Google Scholar 

  • Eckhardt F, Lewin J, Cortese R et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elgin SC, Reuter G (2013) Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb Perspect Biol 5:a017780

    PubMed  Google Scholar 

  • Elgin SC, Weintraub H (1975) Chromosomal proteins and chromatin structure. Annu Rev Biochem 44:725–774

    CAS  PubMed  Google Scholar 

  • Ernst J, Kheradpour P, Mikkelsen TS et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49

    PubMed Central  CAS  PubMed  Google Scholar 

  • Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16(Spec No 1):R50–R59

    CAS  PubMed  Google Scholar 

  • Euskirchen G, Auerbach RK, Snyder M (2012) SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J Biol Chem 287:30897–30905

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feil R, Fraga MF (2011) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109

    Google Scholar 

  • Feser J, Tyler J (2011) Chromatin structure as a mediator of aging. FEBS Lett 585:2041–2048

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feser J, Truong D, Das C et al (2010) Elevated histone expression promotes life span extension. Mol Cell 39:724–735

    PubMed Central  CAS  PubMed  Google Scholar 

  • Flachsbart F, Caliebe A, Kleindorp R et al (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci U S A 106:2700–2705

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23:413–418

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609

    PubMed Central  CAS  PubMed  Google Scholar 

  • Francis NJ, Kingston RE, Woodcock CL (2004) Chromatin compaction by a polycomb group protein complex. Science 306:1574–1577

    CAS  PubMed  Google Scholar 

  • Frescas D, Valenti L, Accili D (2005) Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 280:20589–20595

    CAS  PubMed  Google Scholar 

  • Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798

    CAS  PubMed  Google Scholar 

  • Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T (2001) Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 20:2536–2544

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gentilini D, Mari D, Castaldi D et al (2013) Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians’ offspring. Age (Dordr) 35:1961–1973

    CAS  Google Scholar 

  • Gervin K, Vigeland MD, Mattingsdal M et al (2012) DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes. PLoS Genet 8:e1002454

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gombar S, Jung HJ, Dong F et al (2012) Comprehensive microRNA profiling in B-cells of human centenarians by massively parallel sequencing. BMC Genomics 13:353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gorospe M, Abdelmohsen K (2011) Microregulators come of age in senescence. Trends Genet 27:233–241

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grant PA, Duggan L, Cote J et al (1997) Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11:1640–1650

    CAS  PubMed  Google Scholar 

  • Greer EL, Maures TJ, Hauswirth AG et al (2010) Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466:383–387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Greer EL, Maures TJ, Ucar D et al (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479:365–371

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grzenda A, Lomberk G, Zhang JS, Urrutia R (2009) Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta 1789:443–450

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gu SG, Pak J, Guang S, Maniar JM, Kennedy S, Fire A (2012) Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat Genet 44:157–164

    CAS  PubMed  Google Scholar 

  • Gudmundsson H, Gudbjartsson DF, Frigge M, Gulcher JR, Stefansson K (2000) Inheritance of human longevity in Iceland. Eur J Hum Genet 8:743–749

    CAS  PubMed  Google Scholar 

  • Gueant JL, Elakoum R, Ziegler O et al (2014) Nutritional models of foetal programming and nutrigenomic and epigenomic dysregulations of fatty acid metabolism in the liver and heart. Pflugers Arch 466:833–850

    CAS  PubMed  Google Scholar 

  • Guo JU, Su Y, Zhong C, Ming GL, Song H (2011a) Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle 10:2662–2668

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo Z, Adomas AB, Jackson ED, Qin H, Townsend JP (2011b) SIR2 and other genes are abundantly expressed in long-lived natural segregants for replicative aging of the budding yeast Saccharomyces cerevisiae. FEMS Yeast Res 11:345–355

    CAS  PubMed  Google Scholar 

  • Hackl M, Brunner S, Fortschegger K et al (2010) miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 9:291–296

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hannum G, Guinney J, Zhao L et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harmston N, Lenhard B (2013) Chromatin and epigenetic features of long-range gene regulation. Nucleic Acids Res 41:7185–7199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    CAS  PubMed  Google Scholar 

  • He YF, Li BZ, Li Z et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hebert SS, Horre K, Nicolai L et al (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105:6415–6420

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hebert SS, Horre K, Nicolai L et al (2009) MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis 33:422–428

    CAS  PubMed  Google Scholar 

  • Henikoff S (1990) Position-effect variegation after 60 years. Trends Genet 6:422–426

    CAS  PubMed  Google Scholar 

  • Henikoff S, Furuyama T, Ahmad K (2004) Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 20:320–326

    CAS  PubMed  Google Scholar 

  • Hergenreider E, Heydt S, Treguer K et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14:249–256

    CAS  PubMed  Google Scholar 

  • Herranz D, Serrano M (2010) SIRT1: recent lessons from mouse models. Nat Rev Cancer 10:819–823

    PubMed Central  CAS  PubMed  Google Scholar 

  • Herranz D, Munoz-Martin M, Canamero M et al (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1:3

    PubMed Central  PubMed  Google Scholar 

  • Herskind AM, McGue M, Holm NV, Sorensen TI, Harvald B, Vaupel JW (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet 97:319–323

    CAS  PubMed  Google Scholar 

  • Heyn H, Li N, Ferreira HJ et al (2012) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A 109:10522–10527

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ho SM, Tang WY, Belmonte de Frausto J, Prins GS (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66:5624–5632

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffmann J, Romey R, Fink C, Yong L, Roeder T (2013) Overexpression of Sir2 in the adult fat body is sufficient to extend lifespan of male and female Drosophila. Aging (Albany NY) 5:315–327

    CAS  Google Scholar 

  • Huidobro C, Fernandez AF, Fraga MF (2013) The role of genetics in the establishment and maintenance of the epigenome. Cell Mol Life Sci 70:1543–1573

    CAS  PubMed  Google Scholar 

  • Illingworth R, Kerr A, Desousa D et al (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6:e22

    PubMed Central  PubMed  Google Scholar 

  • Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    CAS  PubMed  Google Scholar 

  • Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295:2080–2083

    CAS  PubMed  Google Scholar 

  • Jazbutyte V, Fiedler J, Kneitz S et al (2013) MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age 35:747–762

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jazwinski SM (2005) Yeast longevity and aging – the mitochondrial connection. Mech Ageing Dev 126:243–248

    CAS  PubMed  Google Scholar 

  • Jeninga EH, Schoonjans K, Auwerx J (2010) Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene 29:4617–4624

    CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  • Johansson A, Enroth S, Gyllensten U (2013) Continuous aging of the human DNA methylome throughout the human lifespan. PLoS One 8:e67378

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    CAS  PubMed  Google Scholar 

  • Joubert BR, Haberg SE, Nilsen RM et al (2012) 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 120:1425–1431

    PubMed Central  CAS  PubMed  Google Scholar 

  • Judd BH (1955) Direct proof of a variegated-type position effect at the white locus in Drosophila melanogaster. Genetics 40:739–744

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaminen-Ahola N, Ahola A, Maga M et al (2010) Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 6:e1000811

    PubMed Central  PubMed  Google Scholar 

  • Kaminsky ZA, Tang T, Wang SC et al (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41:240–245

    CAS  PubMed  Google Scholar 

  • Kanfi Y, Naiman S, Amir G et al (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221

    CAS  PubMed  Google Scholar 

  • Kenyon C (2001) A conserved regulatory system for aging. Cell 105:165–168

    CAS  PubMed  Google Scholar 

  • Kerber RA, O’Brien E, Smith KR, Cawthon RM (2001) Familial excess longevity in Utah genealogies. J Gerontol A Biol Sci Med Sci 56:B130–B139

    CAS  PubMed  Google Scholar 

  • Kim S, Benguria A, Lai CY, Jazwinski SM (1999) Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. Mol Biol Cell 10:3125–3136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim S, Ohkuni K, Couplan E, Jazwinski SM (2004) The histone acetyltransferase GCN5 modulates the retrograde response and genome stability determining yeast longevity. Biogerontology 5:305–316

    CAS  PubMed  Google Scholar 

  • Kim S, Bi X, Czarny-Ratajczak M et al (2012a) Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology 13:119–131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim BC, Lee HC, Lee JJ et al (2012b) Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment. EMBO J 31:4289–4303

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim S, Welsh DA, Cherry KE, Myers L, Jazwinski SM (2013) Association of healthy aging with parental longevity. Age (Dordr) 35:1975–1982

    Google Scholar 

  • Kirchner H, Osler ME, Krook A, Zierath JR (2013) Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol 23:203–209

    CAS  PubMed  Google Scholar 

  • Koch CM, Andrews RM, Flicek P et al (2007) The landscape of histone modifications across 1 % of the human genome in five human cell lines. Genome Res 17:691–707

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    CAS  PubMed  Google Scholar 

  • Kutay H, Klepper C, Wang B et al (2012) Reduced susceptibility of DNA methyltransferase 1 hypomorphic (Dnmt1N/+) mice to hepatic steatosis upon feeding liquid alcohol diet. PLoS One 7:e41949

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16:2893–2905

    PubMed Central  CAS  PubMed  Google Scholar 

  • La Rocca G, Badin M, Shi B et al (2009a) Mechanism of growth inhibition by MicroRNA 145: the role of the IGF-I receptor signaling pathway. J Cell Physiol 220:485–491

    PubMed  Google Scholar 

  • La Rocca G, Shi B, Badin M, De Angelis T, Sepp-Lorenzino L, Baserga R (2009b) Growth inhibition by microRNAs that target the insulin receptor substrate-1. Cell Cycle 8:2255–2259

    PubMed  Google Scholar 

  • Lam LL, Emberly E, Fraser HB et al (2012) Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci U S A 109(Suppl 2):17253–17260

    PubMed Central  CAS  PubMed  Google Scholar 

  • Larson K, Yan SJ, Tsurumi A et al (2012) Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8:e1002473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee KW, Pausova Z (2013) Cigarette smoking and DNA methylation. Front Genet 4:132

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8:284–295

    CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  • Lee TI, Jenner RG, Boyer LA et al (2006) Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125:301–313

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee J, Padhye A, Sharma A et al (2010) A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem 285:12604–12611

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lenhard B, Sandelin A, Carninci P (2012) Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat Rev Genet 13:233–245

    CAS  PubMed  Google Scholar 

  • Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 3:429–438

    CAS  PubMed  Google Scholar 

  • Li Y, Wang WJ, Cao H et al (2009) Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations. Hum Mol Genet 18:4897–4904

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liang R, Khanna A, Muthusamy S et al (2011) Post-transcriptional regulation of IGF1R by key microRNAs in long-lived mutant mice. Aging Cell 10:1080–1088

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    CAS  PubMed  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    CAS  PubMed  Google Scholar 

  • Lister R, Mukamel EA, Nery JR et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905

    PubMed Central  PubMed  Google Scholar 

  • Ljungquist B, Berg S, Lanke J, McClearn GE, Pedersen NL (1998) The effect of genetic factors for longevity: a comparison of identical and fraternal twins in the Swedish Twin Registry. J Gerontol A Biol Sci Med Sci 53:M441–M446

    CAS  PubMed  Google Scholar 

  • Lodygin D, Tarasov V, Epanchintsev A et al (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–2600

    CAS  PubMed  Google Scholar 

  • Lopatina N, Haskell JF, Andrews LG, Poole JC, Saldanha S, Tollefsbol T (2002) Differential maintenance and de novo methylating activity by three DNA methyltransferases in aging and immortalized fibroblasts. J Cell Biochem 84:324–334

    PubMed  Google Scholar 

  • Lorincz MC, Dickerson DR, Schmitt M, Groudine M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11:1068–1075

    CAS  PubMed  Google Scholar 

  • Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T (2010) Regulation of alternative splicing by histone modifications. Science 327:996–1000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    CAS  PubMed  Google Scholar 

  • Luo J, Nikolaev AY, Imai S et al (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148

    CAS  PubMed  Google Scholar 

  • Margueron R, Reinberg D (2011) The polycomb complex PRC2 and its mark in life. Nature 469:343–349

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martin C, Zhang Y (2007) Mechanisms of epigenetic inheritance. Curr Opin Cell Biol 19:266–272

    CAS  PubMed  Google Scholar 

  • Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM (1999) Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97:621–633

    CAS  PubMed  Google Scholar 

  • Martinowich K, Hattori D, Wu H et al (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893

    CAS  PubMed  Google Scholar 

  • Marushige K, Bonner J (1971) Fractionation of liver chromatin. Proc Natl Acad Sci U S A 68:2941–2944

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12:5–9

    CAS  PubMed  Google Scholar 

  • Masoro EJ (2006) Dietary restriction-induced life extension: a broadly based biological phenomenon. Biogerontology 7:153–155

    PubMed  Google Scholar 

  • Maunakea AK, Nagarajan RP, Bilenky M et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257

    PubMed Central  CAS  PubMed  Google Scholar 

  • McAinsh AD, Scott-Drew S, Murray JA, Jackson SP (1999) DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr Biol 9:963–966

    CAS  PubMed  Google Scholar 

  • McGee SL, Hargreaves M (2004) Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 53:1208–1214

    CAS  PubMed  Google Scholar 

  • McGowan PO, Sasaki A, D’Alessio AC et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348

    PubMed Central  CAS  PubMed  Google Scholar 

  • McGue M, Vaupel JW, Holm N, Harvald B (1993) Longevity is moderately heritable in a sample of Danish twins born 1870–1880. J Gerontol 48:B237–B244

    CAS  PubMed  Google Scholar 

  • Meissner A, Mikkelsen TS, Gu H et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    PubMed Central  CAS  PubMed  Google Scholar 

  • Menghini R, Casagrande V, Cardellini M et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120:1524–1532

    CAS  PubMed  Google Scholar 

  • Metzger E, Wissmann M, Yin N et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    CAS  PubMed  Google Scholar 

  • Metzger E, Imhof A, Patel D et al (2010) Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 464:792–796

    CAS  PubMed  Google Scholar 

  • Migliaccio E, Giorgio M, Mele S et al (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    CAS  PubMed  Google Scholar 

  • Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    CAS  PubMed  Google Scholar 

  • Mills KD, Sinclair DA, Guarente L (1999) MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97:609–620

    CAS  PubMed  Google Scholar 

  • Mitchell BD, Hsueh WC, King TM et al (2001) Heritability of life span in the Old Order Amish. Am J Med Genet 102:346–352

    CAS  PubMed  Google Scholar 

  • Miyaki S, Nakasa T, Otsuki S et al (2009) MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60:2723–2730

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mohn F, Weber M, Rebhan M et al (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30:755–766

    CAS  PubMed  Google Scholar 

  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318

    CAS  PubMed  Google Scholar 

  • Mori MA, Raghavan P, Thomou T et al (2012) Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab 16:336–347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muller J, Hart CM, Francis NJ et al (2002) Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell 111:197–208

    CAS  PubMed  Google Scholar 

  • Murakami S, Johnson TE (1996) A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143:1207–1218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Murgatroyd C, Patchev AV, Wu Y et al (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12:1559–1566

    CAS  PubMed  Google Scholar 

  • Murphy LJ (2003) The role of the insulin-like growth factors and their binding proteins in glucose homeostasis. Exp Diabesity Res 4:213–224

    PubMed Central  PubMed  Google Scholar 

  • Nagaraja AK, Creighton CJ, Yu Z et al (2010) A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 24:447–463

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakahata Y, Kaluzova M, Grimaldi B et al (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nan X, Ng HH, Johnson CA et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    CAS  PubMed  Google Scholar 

  • Nemoto S, Finkel T (2002) Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295:2450–2452

    CAS  PubMed  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 280:16456–16460

    CAS  PubMed  Google Scholar 

  • Nielsen PR, Nietlispach D, Mott HR et al (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416:103–107

    CAS  PubMed  Google Scholar 

  • Numata S, Ye T, Hyde TM et al (2012) DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 90:260–272

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oberdoerffer P, Michan S, McVay M et al (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907–918

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohm JE, McGarvey KM, Yu X et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Olivieri F, Spazzafumo L, Santini G et al (2012) Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev 133:675–685

    CAS  PubMed  Google Scholar 

  • Olivieri F, Lazzarini R, Recchioni R et al (2013) MiR-146a as marker of senescence-associated pro-inflammatory status in cells involved in vascular remodelling. Age 35:1157–1172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ongenaert M, Wisman GB, Volders HH et al (2008) Discovery of DNA methylation markers in cervical cancer using relaxation ranking. BMC Med Genomics 1:57

    PubMed Central  PubMed  Google Scholar 

  • Park S, Mori R, Shimokawa I (2013) Do sirtuins promote mammalian longevity? A critical review on its relevance to the longevity effect induced by calorie restriction. Mol Cells 35:474–480

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perkins A, Lehmann C, Lawrence RC, Kelly SJ (2013) Alcohol exposure during development: impact on the epigenome. Int J Dev Neurosci 31:391–397

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pray-Grant MG, Schieltz D, McMahon SJ et al (2002) The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol Cell Biol 22:8774–8786

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qu Z, Adelson DL (2012) Evolutionary conservation and functional roles of ncRNA. Front Genet 3:205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qureshi IA, Mehler MF (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13:528–541

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rach EA, Winter DR, Benjamin AM et al (2011) Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level. PLoS Genet 7:e1001274

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283

    CAS  PubMed  Google Scholar 

  • Rakyan VK, Down TA, Maslau S et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rauch TA, Wu X, Zhong X, Riggs AD, Pfeifer GP (2009) A human B cell methylome at 100-base pair resolution. Proc Natl Acad Sci U S A 106:671–678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214

    PubMed  Google Scholar 

  • Riedel CG, Dowen RH, Lourenco GF et al (2013) DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat Cell Biol 15:491–501

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116:9–22

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    CAS  PubMed  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101:15998–16003

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rogina B, Helfand SL, Frankel S (2002) Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298:1745

    CAS  PubMed  Google Scholar 

  • Roider HG, Lenhard B, Kanhere A, Haas SA, Vingron M (2009) CpG-depleted promoters harbor tissue-specific transcription factor binding signals–implications for motif overrepresentation analyses. Nucleic Acids Res 37:6305–6315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ronn T, Volkov P, Davegardh C et al (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9:e1003572

    PubMed Central  PubMed  Google Scholar 

  • Rosenfeld JA, Wang Z, Schones DE, Zhao K, DeSalle R, Zhang MQ (2009) Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics 10:143

    PubMed Central  PubMed  Google Scholar 

  • Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    CAS  PubMed  Google Scholar 

  • Roth TL, Lubin FD, Funk AJ, Sweatt JD (2009) Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 65:760–769

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M (1996) HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A 93:14503–14508

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ryan KK, Seeley RJ (2013) Physiology. Food as a hormone. Science 339:918–919

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salminen A, Kaarniranta K (2009) SIRT1 regulates the ribosomal DNA locus: epigenetic candles twinkle longevity in the Christmas tree. Biochem Biophys Res Commun 378:6–9

    CAS  PubMed  Google Scholar 

  • Sampayo JN, Olsen A, Lithgow GJ (2003) Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics. Aging Cell 2:319–326

    CAS  PubMed  Google Scholar 

  • Sandovici I, Smith NH, Nitert MD et al (2011) Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci U S A 108:5449–5454

    PubMed Central  CAS  PubMed  Google Scholar 

  • Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 32:393–396

    CAS  PubMed  Google Scholar 

  • Schaefer A, O’Carroll D, Tan CL et al (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schloissnig S, Arumugam M, Sunagawa S et al (2013) Genomic variation landscape of the human gut microbiome. Nature 493:45–50

    PubMed Central  PubMed  Google Scholar 

  • Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128:735–745

    CAS  PubMed  Google Scholar 

  • Schuettengruber B, Martinez AM, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12:799–814

    CAS  PubMed  Google Scholar 

  • Serna E, Gambini J, Borras C et al (2012) Centenarians, but not octogenarians, up-regulate the expression of microRNAs. Sci Rep 2:961

    PubMed Central  PubMed  Google Scholar 

  • Shah MS, Davidson LA, Chapkin RS (2012) Mechanistic insights into the role of microRNAs in cancer: influence of nutrient crosstalk. Front Genet 3:305

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shain AH, Pollack JR (2013) The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One 8:e55119

    PubMed Central  PubMed  Google Scholar 

  • Sheinerman KS, Tsivinsky VG, Crawford F, Mullan MJ, Abdullah L, Umansky SR (2012) Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging 4:590–605

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shenker NS, Ueland PM, Polidoro S et al (2013) DNA methylation as a long-term biomarker of exposure to tobacco smoke. Epidemiology 24:712–716

    PubMed  Google Scholar 

  • Shu J, Jelinek J, Chang H et al (2006) Silencing of bidirectional promoters by DNA methylation in tumorigenesis. Cancer Res 66:5077–5084

    CAS  PubMed  Google Scholar 

  • Simon JA, Kingston RE (2013) Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49:808–824

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slatkin M (2009) Epigenetic inheritance and the missing heritability problem. Genetics 182:845–850

    PubMed Central  PubMed  Google Scholar 

  • Smolle M, Workman JL (1829) Transcription-associated histone modifications and cryptic transcription. Biochim Biophys Acta 2013:84–97

    Google Scholar 

  • Spofford JB, DeSalle R (1991) Nucleolus organizer-suppressed position-effect variegation in Drosophila melanogaster. Genet Res 57:245–255

    CAS  PubMed  Google Scholar 

  • Spruijt CG, Gnerlich F, Smits AH et al (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152:1146–1159

    CAS  PubMed  Google Scholar 

  • Steger DJ, Lefterova MI, Ying L et al (2008) DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 28:2825–2839

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stein R, Gruenbaum Y, Pollack Y, Razin A, Cedar H (1982) Clonal inheritance of the pattern of DNA methylation in mouse cells. Proc Natl Acad Sci U S A 79:61–65

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stock JK, Giadrossi S, Casanova M et al (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9:1428–1435

    CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    CAS  PubMed  Google Scholar 

  • Strahl BD, Ohba R, Cook RG, Allis CD (1999) Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in tetrahymena. Proc Natl Acad Sci U S A 96:14967–14972

    PubMed Central  CAS  PubMed  Google Scholar 

  • Straussman R, Nejman D, Roberts D et al (2009) Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Mol Biol 16:564–571

    CAS  PubMed  Google Scholar 

  • Strohner R, Nemeth A, Nightingale KP, Grummt I, Becker PB, Langst G (2004) Recruitment of the nucleolar remodeling complex NoRC establishes ribosomal DNA silencing in chromatin. Mol Cell Biol 24:1791–1798

    PubMed Central  CAS  PubMed  Google Scholar 

  • Strum JC, Johnson JH, Ward J et al (2009) MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol 23:1876–1884

    CAS  PubMed  Google Scholar 

  • Subramanian V, Mazumder A, Surface LE et al (2013) H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation. PLoS Genet 9:e1003725

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suderman M, McGowan PO, Sasaki A et al (2012) Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proc Natl Acad Sci U S A 109(Suppl 2):17266–17272

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun W, Julie Li YS, Huang HD, Shyy JY, Chien S (2010) microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng 12:1–27

    CAS  PubMed  Google Scholar 

  • Szerlong HJ, Prenni JE, Nyborg JK, Hansen JC (2010) Activator-dependent p300 acetylation of chromatin in vitro: enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions. J Biol Chem 285:31954–31964

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szulwach KE, Li X, Li Y et al (2011a) Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet 7:e1002154

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szulwach KE, Li X, Li Y et al (2011b) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14:1607–1616

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szyf M, Bick J (2013) DNA methylation: a mechanism for embedding early life experiences in the genome. Child Dev 84:49–57

    PubMed Central  PubMed  Google Scholar 

  • Takahashi M, Eda A, Fukushima T, Hohjoh H (2012) Reduction of type IV collagen by upregulated miR-29 in normal elderly mouse and klotho-deficient, senescence-model mouse. PLoS One 7:e48974

    PubMed Central  CAS  PubMed  Google Scholar 

  • Talens RP, Christensen K, Putter H et al (2012) Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 11:694–703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tardif G, Hum D, Pelletier JP, Duval N, Martel-Pelletier J (2009) Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord 10:148

    PubMed Central  PubMed  Google Scholar 

  • Tennen RI, Bua DJ, Wright WE, Chua KF (2011) SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun 2:433

    PubMed Central  PubMed  Google Scholar 

  • Teschendorff AE, Menon U, Gentry-Maharaj A et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tiihonen K, Ouwehand AC, Rautonen N (2010) Human intestinal microbiota and healthy ageing. Ageing Res Rev 9:107–116

    PubMed  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    CAS  PubMed  Google Scholar 

  • Trinei M, Giorgio M, Cicalese A et al (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21:3872–3878

    CAS  PubMed  Google Scholar 

  • Ukai T, Sato M, Akutsu H, Umezawa A, Mochida J (2012) MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism. J Orthop Res 30:1915–1922

    CAS  PubMed  Google Scholar 

  • Unternaehrer E, Luers P, Mill J et al (2012) Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF) after acute psychosocial stress. Transl Psychiatr 2:e150

    CAS  Google Scholar 

  • Vaziri H, Dessain SK, Ng Eaton E et al (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    CAS  PubMed  Google Scholar 

  • Wang W, Cote J, Xue Y et al (1996) Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J 15:5370–5382

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang RH, Sengupta K, Li C et al (2008) Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14:312–323

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe Y, Kanai A (2011) Systems biology reveals microRNA-mediated gene regulation. Front Genet 2:29

    PubMed Central  PubMed  Google Scholar 

  • Waterland RA (2003) Do maternal methyl supplements in mice affect DNA methylation of offspring? J Nutr 133:238, author reply 9

    CAS  PubMed  Google Scholar 

  • West J, Widschwendter M, Teschendorff AE (2013) Distinctive topology of age-associated epigenetic drift in the human interactome. Proc Natl Acad Sci U S A 110:14138–14143

    PubMed Central  CAS  PubMed  Google Scholar 

  • Whitaker R, Faulkner S, Miyokawa R et al (2013) Increased expression of Drosophila Sir 2 extends life span in a dose-dependent manner. Aging (Albany NY) 5:682–691

    CAS  Google Scholar 

  • Whyte WA, Bilodeau S, Orlando DA et al (2012) Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482:221–225

    PubMed Central  CAS  PubMed  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

    CAS  PubMed  Google Scholar 

  • Willcox BJ, Donlon TA, He Q et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A 105:13987–13992

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12:949–957

    CAS  PubMed  Google Scholar 

  • Wong CC, Caspi A, Williams B et al (2010) A longitudinal study of epigenetic variation in twins. Epigenetics 5:516–526

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11:607–620

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu H, D’Alessio AC, Ito S et al (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473:389–393

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xie H, Wang M, de Andrade A et al (2011) Genome-wide quantitative assessment of variation in DNA methylation patterns. Nucleic Acids Res 39:4099–4108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265:17174–17179

    CAS  PubMed  Google Scholar 

  • Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266

    CAS  PubMed  Google Scholar 

  • Zhang FF, Cardarelli R, Carroll J et al (2011) Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics 6:293–299

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang P, Huang B, Xu X, Sessa WC (2013a) Ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG), components of the demethylation pathway, are direct targets of miRNA-29a. Biochem Biophys Res Commun 437:368–373

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Wang F, Kranzler HR, Zhao H, Gelernter J (2013b) Profiling of childhood adversity-associated DNA methylation changes in alcoholic patients and healthy controls. PLoS One 8:e65648

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou VW, Goren A, Bernstein BE (2011a) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18

    PubMed  Google Scholar 

  • Zhou S, Chen HZ, Wan YZ et al (2011b) Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res 109:639–648

    CAS  PubMed  Google Scholar 

  • Zovoilis A, Agbemenyah HY, Agis-Balboa RC et al (2011) microRNA-34c is a novel target to treat dementias. EMBO J 30:4299–4308

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in our laboratory is supported by grants from the National Institute on Aging and from the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Michal Jazwinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Kim, S., Jazwinski, S.M. (2015). The Epigenome and Aging. In: Su, L., Chiang, Tc. (eds) Environmental Epigenetics. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6678-8_8

Download citation

Publish with us

Policies and ethics