Advertisement

Pregnancy Exposures Determine Risk of Breast Cancer in Multiple Generations of Offspring

  • Zhenzhen Zhang
  • Shaowei Chen
  • Zhuang Feng
  • L. Joseph Su
Part of the Molecular and Integrative Toxicology book series (MOLECUL)

Abstract

Breast cancer is the most common non-skin cancer in women in the United States. The incidence rate of breast cancer among migrant women from Asian countries, where the breast cancer incidence is low, could achieve the rate of the United States within two generations. Maternal exposures to various environmental factors during pregnancy have been hypothesized to be associated with offsprings’ breast cancer risk. These exposures may change various carcinogenesis-related hormone levels and alter the epigenome among offsprings, which increase their breast cancer risk in later life. The effect of maternal pregnancy exposures on offsprings’ breast cancer via epigenetic modifications could be carried out through multiple generations of offspring. In this chapter, we aim to summarize findings from both experimental and epidemiological studies investigating associations between maternal pregnancy exposures and offspring’s breast cancer risk.

Keywords

Pregnancy Offspring Breast cancer 

References

  1. Abrams B, Altman SL, Pickett KE (2000) Pregnancy weight gain: still controversial. Am J Clin Nutr 71:1233S–1241SPubMedGoogle Scholar
  2. Arbeev KG, Hunt SC, Kimura M, Aviv A, Yashin AI (2011) Leukocyte telomere length, breast cancer risk in the offspring: the relations with father’s age at birth. Mech Ageing Dev 132:149–153PubMedCentralPubMedCrossRefGoogle Scholar
  3. Barbieri RL (2009) The breast. In: Strauss JF, Barbieri RL (eds) Yen and Jaffe’s reproductive endocrinology: physiology, pathophysiology, and clinical management. Saunders Elsevier, Philadelphia, p 235CrossRefGoogle Scholar
  4. Bennett JA, Semeniuk DJ, Jacobson HI, Murgita RA (1997) Similarity between natural and recombinant human alpha-fetoprotein as inhibitors of estrogen-dependent breast cancer growth. Breast Cancer Res Treat 45:169–179PubMedCrossRefGoogle Scholar
  5. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bernardino T, Roux C, Almeida A et al (1997) DNA hypomethylation in breast cancer: an independent parameter of tumor progression? Cancer Genet Cytogenet 97:83–89PubMedCrossRefGoogle Scholar
  7. Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402PubMedCrossRefGoogle Scholar
  8. Borgel J, Guibert S, Li Y, Chiba H, Schubeler D, Sasaki H, Forne T, Weber M (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42:1093–1100PubMedCrossRefGoogle Scholar
  9. Boylan ES, Calhoon RE (1983) Transplacental action of diethylstilbestrol on mammary carcinogenesis in female rats given one or two doses of 7,12-dimethylbenz(a)anthracene. Cancer Res 43:4879–4884PubMedGoogle Scholar
  10. Brisken C (2013) Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nat Rev Cancer 13:385–396PubMedCrossRefGoogle Scholar
  11. Brown NM, Manzolillo PA, Zhang JX, Wang J, Lamartiniere CA (1998) Prenatal TCDD and predisposition to mammary cancer in the rat. Carcinogenesis 19:1623–1629PubMedCrossRefGoogle Scholar
  12. Burdge GC, Hoile SP, Lillycrop KA (2012) Epigenetics: are there implications for personalised nutrition? Curr Opin Clin Nutr Metab Care 15:442–447PubMedCrossRefGoogle Scholar
  13. Calle EE, Frumkin H, Henley SJ, Savitz DA, Thun MJ (2002) Organochlorines and breast cancer risk. CA Cancer J Clin 52:301–309PubMedCrossRefGoogle Scholar
  14. Chellakooty M, Vangsgaard K, Larsen T et al (2004) A longitudinal study of intrauterine growth and the placental growth hormone (GH)-insulin-like growth factor I axis in maternal circulation: association between placental GH and fetal growth. J Clin Endocrinol Metab 89:384–391PubMedCrossRefGoogle Scholar
  15. Cho K, Mabasa L, Bae S, Walters MW, Park CS (2012) Maternal high-methyl diet suppresses mammary carcinogenesis in female rat offspring. Carcinogenesis 33:1106–1112PubMedCrossRefGoogle Scholar
  16. Choi JY, Lee KM, Park SK, Noh DY, Ahn SH, Yoo KY, Kang D (2005) Association of paternal age at birth and the risk of breast cancer in offspring: a case control study. BMC Cancer 5:143PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cox J, Williams S, Grove K, Lane RH, Aagaard-Tillery KM (2009) A maternal high-fat diet is accompanied by alterations in the fetal primate metabolome. Am J Obstet Gynecol 201(281):e1–e9Google Scholar
  18. Dallol A, Al-Maghrabi J, Buhmeida A et al (2012) Methylation of the polycomb group target genes is a possible biomarker for favorable prognosis in colorectal cancer. Cancer Epidemiol Biomarkers Prev 21:2069–2075PubMedCrossRefGoogle Scholar
  19. De Assis S, Hilakivi-Clarke L (2006) Timing of dietary estrogenic exposures and breast cancer risk. Ann N Y Acad Sci 1089:14–35PubMedCrossRefGoogle Scholar
  20. de Assis S, Khan G, Hilakivi-Clarke L (2006) High birth weight increases mammary tumorigenesis in rats. Int J Cancer 119:1537–1546PubMedCrossRefGoogle Scholar
  21. de Assis S, Warri A, Cruz MI, Laja O, Tian Y, Zhang B, Wang Y, Huang TH, Hilakivi-Clarke L (2012) High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat Commun 3:1053PubMedCentralPubMedCrossRefGoogle Scholar
  22. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104:13056–13061PubMedCentralPubMedCrossRefGoogle Scholar
  23. Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, Luque EH, Munoz-de-Toro M (2007) Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect 115:80–86PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ekbom A, Trichopoulos D, Adami HO, Hsieh CC, Lan SJ (1992) Evidence of prenatal influences on breast cancer risk. Lancet 340:1015–1018PubMedCrossRefGoogle Scholar
  25. Ekbom A, Hsieh CC, Lipworth L, Adami HQ, Trichopoulos D (1997) Intrauterine environment and breast cancer risk in women: a population-based study. J Natl Cancer Inst 89:71–76PubMedCrossRefGoogle Scholar
  26. Falcone T, Hurd WW (eds) (2007) Clinical reproductive medicine and surgery. Elsevier Mosby, PhiladelphiaGoogle Scholar
  27. Fang F, Turcan S, Rimner A et al (2011) Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med 3:75ra25PubMedCentralPubMedCrossRefGoogle Scholar
  28. Fernandez-Twinn DS, Ekizoglou S, Gusterson BA, Luan J, Ozanne SE (2007) Compensatory mammary growth following protein restriction during pregnancy and lactation increases early-onset mammary tumor incidence in rats. Carcinogenesis 28:545–552PubMedCrossRefGoogle Scholar
  29. Ferretti G, Felici A, Cognetti F (2007) Pregnancy levels of estrogen and progesterone: the double-edged sword. Cancer Epidemiol Biomarkers Prev 16:634, author reply -5PubMedCrossRefGoogle Scholar
  30. Files JA, Ko MG, Pruthi S (2011) Bioidentical hormone therapy. Mayo Clin Proc 86:673–680, quiz 80PubMedCentralPubMedCrossRefGoogle Scholar
  31. Finkelstein JD (2003) Methionine metabolism in liver diseases. Am J Clin Nutr 77:1094–1095PubMedGoogle Scholar
  32. Forman MR (2011) Early life exposures and breast cancer risk: preeclampsia and puberty. In: Thirty-Fourth annual CTRC-AACR San Antonio breast cancer symposium, Cancer Res, San Antonio, 6–10 Dec 2011Google Scholar
  33. Fortunati N, Catalano MG, Boccuzzi G, Frairia R (2010) Sex hormone-binding globulin (SHBG), estradiol and breast cancer. Mol Cell Endocrinol 316:86–92PubMedCrossRefGoogle Scholar
  34. Fourkala EO, Hauser-Kronberger C, Apostolidou S et al (2010) DNA methylation of polycomb group target genes in cores taken from breast cancer centre and periphery. Breast Cancer Res Treat 120:345–355PubMedCrossRefGoogle Scholar
  35. Fritz WA, Coward L, Wang J, Lamartiniere CA (1998) Dietary genistein: perinatal mammary cancer prevention, bioavailability and toxicity testing in the rat. Carcinogenesis 19:2151–2158PubMedCrossRefGoogle Scholar
  36. Giudice LC, Martina NA, Crystal RA, Tazuke S, Druzin M (1997) Insulin-like growth factor binding protein-1 at the maternal-fetal interface and insulin-like growth factor-I, insulin-like growth factor-II, and insulin-like growth factor binding protein-1 in the circulation of women with severe preeclampsia. Am J Obstet Gynecol 176:751–757, discussion 7–8PubMedCrossRefGoogle Scholar
  37. Glier MB, Green TJ, Devlin AM (2014) Methyl nutrients, DNA methylation, and cardiovascular disease. Mol Nutr Food Res 58:172–182PubMedCrossRefGoogle Scholar
  38. Halakivi-Clarke L, Cho E, Onojafe I, Liao DJ, Clarke R (2000) Maternal exposure to tamoxifen during pregnancy increases carcinogen-induced mammary tumorigenesis among female rat offspring. Clin Cancer Res 6:305–308PubMedGoogle Scholar
  39. Hardy J, Singleton A (2009) Genomewide association studies and human disease. N Engl J Med 360:1759–1768PubMedCentralPubMedCrossRefGoogle Scholar
  40. Hilakivi-Clarke L, Clarke R, Lippman ME (1994) Perinatal factors increase breast cancer risk. Breast Cancer Res Treat 31:273–284PubMedCrossRefGoogle Scholar
  41. Hilakivi-Clarke L, Clarke R, Onojafe I, Raygada M, Cho E, Lippman M (1997) A maternal diet high in n – 6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci U S A 94:9372–9377PubMedCentralPubMedCrossRefGoogle Scholar
  42. Hilakivi-Clarke L, Cho E, Clarke R (1998) Maternal genistein exposure mimics the effects of estrogen on mammary gland development in female mouse offspring. Oncol Rep 5:609–616PubMedGoogle Scholar
  43. Hilakivi-Clarke L, Cho E, Onojafe I, Raygada M, Clarke R (1999) Maternal exposure to genistein during pregnancy increases carcinogen-induced mammary tumorigenesis in female rat offspring. Oncol Rep 6:1089–1095PubMedGoogle Scholar
  44. Hilakivi-Clarke L, Cho E, Cabanes A, DeAssis S, Olivo S, Helferich W, Lippman ME, Clarke R (2002) Dietary modulation of pregnancy estrogen levels and breast cancer risk among female rat offspring. Clin Cancer Res 8:3601–3610PubMedGoogle Scholar
  45. Hilakivi-Clarke L, Cabanes A, de Assis S, Wang M, Khan G, Shoemaker WJ, Stevens RG (2004) In utero alcohol exposure increases mammary tumorigenesis in rats. Br J Cancer 90:2225–2231PubMedCentralPubMedGoogle Scholar
  46. Hilakivi-Clarke L, Luoto R, Huttunen T, Koskenvuo M (2005) Pregnancy weight gain and premenopausal breast cancer risk. J Reprod Med 50:811–816PubMedGoogle Scholar
  47. Hodgson ME, Newman B, Millikan RC (2004) Birthweight, parental age, birth order and breast cancer risk in African-American and white women: a population-based case-control study. Breast Cancer Res 6:R656–R667PubMedCentralPubMedCrossRefGoogle Scholar
  48. Hoover RN, Hyer M, Pfeiffer RM et al (2011) Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med 365:1304–1314PubMedCrossRefGoogle Scholar
  49. Howard BA, Gusterson BA (2000) Human breast development. J Mammary Gland Biol Neoplasia 5:119–137PubMedCrossRefGoogle Scholar
  50. Iles RK, Delves PJ, Butler SA (2010) Does hCG or hCGbeta play a role in cancer cell biology? Mol Cell Endocrinol 329:62–70PubMedCrossRefGoogle Scholar
  51. Ion G, Akinsete JA, Hardman WE (2010) Maternal consumption of canola oil suppressed mammary gland tumorigenesis in C3(1) TAg mice offspring. BMC Cancer 10:81PubMedCentralPubMedCrossRefGoogle Scholar
  52. Iqbal K, Jin SG, Pfeifer GP, Szabo PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 108:3642–3647PubMedCentralPubMedCrossRefGoogle Scholar
  53. Jeffreys M, Northstone K, Holly J, Emmett P, Gunnell D (2011) Levels of insulin-like growth factor during pregnancy and maternal cancer risk: a nested case-control study. Cancer Causes Control 22:945–953PubMedCrossRefGoogle Scholar
  54. Jenkins S, Rowell C, Wang J, Lamartiniere CA (2007) Prenatal TCDD exposure predisposes for mammary cancer in rats. Reprod Toxicol 23:391–396PubMedCentralPubMedCrossRefGoogle Scholar
  55. Jones A, Lechner M, Fourkala EO, Kristeleit R, Widschwendter M (2010) Emerging promise of epigenetics and DNA methylation for the diagnosis and management of women’s cancers. Epigenomics 2:9–38PubMedCrossRefGoogle Scholar
  56. Jovanovic J, Ronneberg JA, Tost J, Kristensen V (2010) The epigenetics of breast cancer. Mol Oncol 4:242–254PubMedCrossRefGoogle Scholar
  57. Juul A (2003) Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Horm IGF Res 13:113–170PubMedCrossRefGoogle Scholar
  58. Kaaks R (2004) Nutrition, insulin, IGF-1 metabolism and cancer risk: a summary of epidemiological evidence. Novartis Found Symp 262:247–260, discussion 60–68PubMedCrossRefGoogle Scholar
  59. Karmaus W, Osuch JR, Eneli I, Mudd LM, Zhang J, Mikucki D, Haan P, Davis S (2009) Maternal levels of dichlorodiphenyl-dichloroethylene (DDE) may increase weight and body mass index in adult female offspring. Occup Environ Med 66:143–149PubMedCrossRefGoogle Scholar
  60. Kawaguchi H, Miyoshi N, Miyamoto Y, Souda M, Umekita Y, Yasuda N, Yoshida H (2010) Effects of fetal exposure to 4-n-octylphenol on mammary tumorigenesis in rats. In Vivo 24:463–470PubMedGoogle Scholar
  61. Key TJ, Appleby PN, Reeves GK, Roddam AW (2010) Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol 11:530–542PubMedCrossRefGoogle Scholar
  62. Khan G, Penttinen P, Cabanes A et al (2007) Maternal flaxseed diet during pregnancy or lactation increases female rat offspring’s susceptibility to carcinogen-induced mammary tumorigenesis. Reprod Toxicol 23:397–406PubMedCentralPubMedCrossRefGoogle Scholar
  63. Kinnunen TI, Luoto R, Gissler M, Hemminki E, Hilakivi-Clarke L (2004) Pregnancy weight gain and breast cancer risk. BMC Womens Health 4:7PubMedCentralPubMedCrossRefGoogle Scholar
  64. Korde LA, Wu AH, Fears T, Nomura AM, West DW, Kolonel LN, Pike MC, Hoover RN, Ziegler RG (2009) Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiol Biomarkers Prev 18:1050–1059PubMedCrossRefGoogle Scholar
  65. Kovacheva VP, Davison JM, Mellott TJ, Rogers AE, Yang S, O’Brien MJ, Blusztajn JK (2009) Raising gestational choline intake alters gene expression in DMBA-evoked mammary tumors and prolongs survival. FASEB J 23:1054–1063PubMedCentralPubMedCrossRefGoogle Scholar
  66. Kuhl H (2005) Pharmacology of estrogens and progestogens: influence of different routes of administration. Climacteric 8(Suppl 1):3–63PubMedCrossRefGoogle Scholar
  67. La Merrill M, Harper R, Birnbaum LS, Cardiff RD, Threadgill DW (2010) Maternal dioxin exposure combined with a diet high in fat increases mammary cancer incidence in mice. Environ Health Perspect 118:596–601PubMedCentralPubMedCrossRefGoogle Scholar
  68. Lagiou P, Lagiou A, Samoli E, Hsieh CC, Adami HO, Trichopoulos D (2006) Diet during pregnancy and levels of maternal pregnancy hormones in relation to the risk of breast cancer in the offspring. Eur J Cancer Prev 15:20–26PubMedCrossRefGoogle Scholar
  69. Lee SA, Shu XO, Li H et al (2009) Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai Women’s Health Study. Am J Clin Nutr 89:1920–1926PubMedCentralPubMedCrossRefGoogle Scholar
  70. Liu JL, LeRoith D (1999) Insulin-like growth factor I is essential for postnatal growth in response to growth hormone. Endocrinology 140:5178–5184PubMedCrossRefGoogle Scholar
  71. Lo CY, Hsieh PH, Chen HF, Su HM (2009) A maternal high-fat diet during pregnancy in rats results in a greater risk of carcinogen-induced mammary tumors in the female offspring than exposure to a high-fat diet in postnatal life. Int J Cancer 125:767–773PubMedCrossRefGoogle Scholar
  72. Lukanova A, Andersson R, Wulff M et al (2008) Human chorionic gonadotropin and alpha-fetoprotein concentrations in pregnancy and maternal risk of breast cancer: a nested case-control study. Am J Epidemiol 168:1284–1291PubMedCentralPubMedCrossRefGoogle Scholar
  73. Luo ZC, Nuyt AM, Delvin E et al (2012) Maternal and fetal IGF-I and IGF-II levels, fetal growth, and gestational diabetes. J Clin Endocrinol Metab 97:1720–1728PubMedCrossRefGoogle Scholar
  74. Ly A, Lee H, Chen J et al (2011) Effect of maternal and postweaning folic acid supplementation on mammary tumor risk in the offspring. Cancer Res 71:988–997PubMedCrossRefGoogle Scholar
  75. Mandrup KR, Hass U, Christiansen S, Boberg J (2012) Perinatal ethinyl oestradiol alters mammary gland development in male and female Wistar rats. Int J Androl 35:385–396PubMedCrossRefGoogle Scholar
  76. McKinney JD, Waller CL (1994) Polychlorinated biphenyls as hormonally active structural analogues. Environ Health Perspect 102:290–297PubMedCentralPubMedCrossRefGoogle Scholar
  77. Medina D (2005) Mammary developmental fate and breast cancer risk. Endocr Relat Cancer 12:483–495PubMedCrossRefGoogle Scholar
  78. Melbye M, Wohlfahrt J, Lei U, Norgaard-Pedersen B, Mouridsen HT, Lambe M, Michels KB (2000) Alpha-fetoprotein levels in maternal serum during pregnancy and maternal breast cancer incidence. J Natl Cancer Inst 92:1001–1005PubMedCrossRefGoogle Scholar
  79. Michels KB, Xue F (2006) Role of birthweight in the etiology of breast cancer. Int J Cancer 119:2007–2025PubMedCrossRefGoogle Scholar
  80. Moelans CB, Verschuur-Maes AH, van Diest PJ (2011) Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer. J Pathol 225:222–231PubMedCrossRefGoogle Scholar
  81. Mucci LA, Lagiou P, Tamimi RM, Hsieh CC, Adami HO, Trichopoulos D (2003) Pregnancy estriol, estradiol, progesterone and prolactin in relation to birth weight and other birth size variables (United States). Cancer Causes Control 14:311–318PubMedCrossRefGoogle Scholar
  82. Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM (2007) Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol 23:383–390PubMedCentralPubMedCrossRefGoogle Scholar
  83. Nechuta S, Paneth N, Velie EM (2010) Pregnancy characteristics and maternal breast cancer risk: a review of the epidemiologic literature. Cancer Causes Control 21:967–989PubMedCrossRefGoogle Scholar
  84. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257PubMedCrossRefGoogle Scholar
  85. Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ, Devilee P (2007) Genetic susceptibility for breast cancer: how many more genes to be found? Crit Rev Oncol Hematol 63:125–149PubMedCrossRefGoogle Scholar
  86. Painter RC, De Rooij SR, Bossuyt PM, Osmond C, Barker DJ, Bleker OP, Roseboom TJ (2006) A possible link between prenatal exposure to famine and breast cancer: a preliminary study. Am J Hum Biol 18:853–856PubMedCrossRefGoogle Scholar
  87. Palmer JR, Wise LA, Hatch EE et al (2006) Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 15:1509–1514PubMedCrossRefGoogle Scholar
  88. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928PubMedCrossRefGoogle Scholar
  89. Potischman N, Troisi R (1999) In-utero and early life exposures in relation to risk of breast cancer. Cancer Causes Control 10:561–573PubMedCrossRefGoogle Scholar
  90. Rahal OM, Pabona JM, Kelly T, Huang Y, Hennings LJ, Prior RL, Al-Dwairi A, Simmen FA, Simmen RC (2013) Suppression of Wnt1-induced mammary tumor growth and lower serum insulin in offspring exposed to maternal blueberry diet suggest early dietary influence on developmental programming. Carcinogenesis 34:464–474PubMedCentralPubMedCrossRefGoogle Scholar
  91. Rao Ch V, Li X, Manna SK, Lei ZM, Aggarwal BB (2004) Human chorionic gonadotropin decreases proliferation and invasion of breast cancer MCF-7 cells by inhibiting NF-kappaB and AP-1 activation. J Biol Chem 279:25503–25510PubMedCrossRefGoogle Scholar
  92. Richardson BE, Hulka BS, Peck JL, Hughes CL, van den Berg BJ, Christianson RE, Calvin JA (1998) Levels of maternal serum alpha-fetoprotein (AFP) in pregnant women and subsequent breast cancer risk. Am J Epidemiol 148:719–727PubMedCrossRefGoogle Scholar
  93. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610PubMedCrossRefGoogle Scholar
  94. Rudel RA, Fenton SE, Ackerman JM, Euling SY, Makris SL (2011) Environmental exposures and mammary gland development: state of the science, public health implications, and research recommendations. Environ Health Perspect 119:1053–1061PubMedCentralPubMedCrossRefGoogle Scholar
  95. Ruder EH, Dorgan JF, Kranz S, Kris-Etherton PM, Hartman TJ (2008) Examining breast cancer growth and lifestyle risk factors: early life, childhood, and adolescence. Clin Breast Cancer 8:334–342PubMedCentralPubMedCrossRefGoogle Scholar
  96. Scarano MI, Strazzullo M, Matarazzo MR, D’Esposito M (2005) DNA methylation 40 years later: its role in human health and disease. J Cell Physiol 204:21–35PubMedCrossRefGoogle Scholar
  97. Schulz R, Proudhon C, Bestor TH, Woodfine K, Lin CS, Lin SP, Prissette M, Oakey RJ, Bourc’his D (2010) The parental non-equivalence of imprinting control regions during mammalian development and evolution. PLoS Genet 6:e1001214PubMedCentralPubMedCrossRefGoogle Scholar
  98. Shearstone JR, Pop R, Bock C, Boyle P, Meissner A, Socolovsky M (2011) Global DNA demethylation during mouse erythropoiesis in vivo. Science 334:799–802PubMedCentralPubMedCrossRefGoogle Scholar
  99. Shu XO, Jin F, Dai Q, Wen W, Potter JD, Kushi LH, Ruan Z, Gao YT, Zheng W (2001) Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol Biomarkers Prev 10:483–488PubMedGoogle Scholar
  100. Sie KK, Chen J, Sohn KJ, Croxford R, Thompson LU, Kim YI (2009) Folic acid supplementation provided in utero and during lactation reduces the number of terminal end buds of the developing mammary glands in the offspring. Cancer Lett 280:72–77PubMedCrossRefGoogle Scholar
  101. Siegel R, DeSantis C, Virgo K et al (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62:220–241PubMedCrossRefGoogle Scholar
  102. Smith-Warner SA, Stampfer MJ (2007) Fat intake and breast cancer revisited. J Natl Cancer Inst 99:418–419PubMedCrossRefGoogle Scholar
  103. Snedeker SM, Diaugustine RP (1996) Hormonal and environmental factors affecting cell proliferation and neoplasia in the mammary gland. Prog Clin Biol Res 394:211–253PubMedGoogle Scholar
  104. Soares J, Pinto AE, Cunha CV, Andre S, Barao I, Sousa JM, Cravo M (1999) Global DNA hypomethylation in breast carcinoma – correlation with prognostic factors and tumor progression. Cancer 85:112–118PubMedCrossRefGoogle Scholar
  105. Su HM, Hsieh PH, Chen HF (2010) A maternal high n-6 fat diet with fish oil supplementation during pregnancy and lactation in rats decreases breast cancer risk in the female offspring. J Nutr Biochem 21:1033–1037PubMedCrossRefGoogle Scholar
  106. Tamimi R, Lagiou P, Vatten LJ, Mucci L, Trichopoulos D, Hellerstein S, Ekbom A, Adami HO, Hsieh CC (2003) Pregnancy hormones, pre-eclampsia, and implications for breast cancer risk in the offspring. Cancer Epidemiol Biomarkers Prev 12:647–650PubMedGoogle Scholar
  107. Teschendorff AE, Menon U, Gentry-Maharaj A et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446PubMedCentralPubMedCrossRefGoogle Scholar
  108. Toniolo P, Grankvist K, Wulff M et al (2010) Human chorionic gonadotropin in pregnancy and maternal risk of breast cancer. Cancer Res 70:6779–6786PubMedCentralPubMedCrossRefGoogle Scholar
  109. Toriola AT, Vaarasmaki M, Lehtinen M et al (2011) Determinants of maternal sex steroids during the first half of pregnancy. Obstet Gynecol 118:1029–1036PubMedCentralPubMedCrossRefGoogle Scholar
  110. Trichopoulos D (1990) Hypothesis: does breast cancer originate in utero? Lancet 335:939–940PubMedCrossRefGoogle Scholar
  111. Troisi R, Potischman N, Hoover RN (2007a) Exploring the underlying hormonal mechanisms of prenatal risk factors for breast cancer: a review and commentary. Cancer Epidemiol Biomarkers Prev 16:1700–1712PubMedCrossRefGoogle Scholar
  112. Troisi R, Hatch EE, Titus-Ernstoff L et al (2007b) Cancer risk in women prenatally exposed to diethylstilbestrol. Int J Cancer 121:356–360PubMedCrossRefGoogle Scholar
  113. Troisi R, Hoover RN, Thadhani R, Hsieh CC, Sluss P, Ballard-Barbash R, Potischman N (2008) Maternal, prenatal and perinatal characteristics and first trimester maternal serum hormone concentrations. Br J Cancer 99:1161–1164PubMedCentralPubMedCrossRefGoogle Scholar
  114. Tucker KL (2001) Methylated cytosine and the brain: a new base for neuroscience. Neuron 30:649–652PubMedCrossRefGoogle Scholar
  115. Ushijima T, Nakajima T, Maekita T (2006) DNA methylation as a marker for the past and future. J Gastroenterol 41:401–407PubMedCrossRefGoogle Scholar
  116. Veeck J, Esteller M (2010) Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia 15:5–17PubMedCentralPubMedCrossRefGoogle Scholar
  117. Walker BE (1990) Tumors in female offspring of control and diethylstilbestrol-exposed mice fed high-fat diets. J Natl Cancer Inst 82:50–54PubMedCrossRefGoogle Scholar
  118. Wilson KM, Willett WC, Michels KB (2011) Mothers’ pre-pregnancy BMI and weight gain during pregnancy and risk of breast cancer in daughters. Breast Cancer Res Treat 130:273–279PubMedCentralPubMedCrossRefGoogle Scholar
  119. Wossidlo M, Nakamura T, Lepikhov K et al (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241PubMedCrossRefGoogle Scholar
  120. Wu AH, Wan P, Hankin J, Tseng CC, Yu MC, Pike MC (2002) Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis 23:1491–1496PubMedCrossRefGoogle Scholar
  121. Wu X, Rahal O, Kang J, Till SR, Prior RL, Simmen RC (2009) In utero and lactational exposure to blueberry via maternal diet promotes mammary epithelial differentiation in prepubescent female rats. Nutr Res 29:802–811PubMedCrossRefGoogle Scholar
  122. Xue F, Michels KB (2007) Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. Lancet Oncol 8:1088–1100PubMedCrossRefGoogle Scholar
  123. Xue F, Colditz GA, Willett WC, Rosner BA, Michels KB (2007) Parental age at delivery and incidence of breast cancer: a prospective cohort study. Breast Cancer Res Treat 104:331–340PubMedCrossRefGoogle Scholar
  124. Yu B, Khan G, Foxworth A, Huang K, Hilakivi-Clarke L (2006) Maternal dietary exposure to fiber during pregnancy and mammary tumorigenesis among rat offspring. Int J Cancer 119:2279–2286PubMedCrossRefGoogle Scholar
  125. Zheng S, Rollet M, Yang K, Pan YX (2012) A gestational low-protein diet represses p21(WAF1/Cip1) expression in the mammary gland of offspring rats through promoter histone modifications. Br J Nutr 108:998–1007PubMedCrossRefGoogle Scholar
  126. Ziegler RG, Hoover RN, Pike MC et al (1993) Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst 85:1819–1827PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Zhenzhen Zhang
    • 1
  • Shaowei Chen
    • 2
  • Zhuang Feng
    • 3
  • L. Joseph Su
    • 4
  1. 1.Department of Public Health & Preventive MedicineOregon Health & Science UniversityPortlandUSA
  2. 2.Department of Pediatrics, Section of Pediatric NephrologyTulane University Health Sciences CenterNew OrleansUSA
  3. 3.Department of PathologyOregon Health and Science UniversityPortlandUSA
  4. 4.Division of Cancer Control and Population Sciences, Epidemiology and Genomic Research Program, Modifiable Risk Factors BranchNational Cancer InstituteRockvilleUSA

Personalised recommendations