Skip to main content

Epidemiology of Environmental Health

  • Chapter
Environmental Epigenetics

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 1600 Accesses

Abstract

There has been a growing awareness of environmental effects among human. More epidemiologic studies have been triggered toward investigating exposure effects of chemical, social or physical factors in relation to the common or complex diseases, such as heart disease, cancer, and diabetes afterward. Following recent advances in genomics and risk assessment, environmental epidemiologic studies are incorporating gene-environment interactions and epigenetic changes to explore the multidisciplinary nature of individual. The challenges for human population work in this field include the complexity of exposure biology and the small effects that are easily disturbed. Several strategies have been developed with an attempt to resolve these challenges, such as the development of exposome, the two-stage designs and Mendelian randomization. In this chapter, the conventional study design features, including particular strengths and limitations, have been summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal A et al (2010) The effects of maternal smoking during pregnancy on offspring outcomes. Prev Med 50(1–2):13–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Albert PS et al (2001) Limitations of the case-only design for identifying gene-environment interactions. Am J Epidemiol 154(8):687–693

    Article  CAS  PubMed  Google Scholar 

  • Amin-Zaki L et al (1974) Intra-uterine methylmercury poisoning in Iraq. Pediatrics 54(5):587–595

    CAS  PubMed  Google Scholar 

  • Angerer J, Ewers U, Wilhelm M (2007) Human biomonitoring: state of the art. Int J Hyg Environ Health 210(3–4):201–228

    Article  CAS  PubMed  Google Scholar 

  • Breslow NE, Lubin JH, Marek P, Langholtz B (1983) Multiplicative models and cohort analysis. J Am Stat Assoc 78:1–12

    Article  Google Scholar 

  • Bureau A et al (2008) Estimating interaction between genetic and environmental risk factors: efficiency of sampling designs within a cohort. Epidemiology 19(1):83–93

    Article  PubMed  Google Scholar 

  • Carroll RJ, Crainiceanu C, Ruppert D, Stefanski LA (2006) Measurement error in nonlinear models: a modern perspective. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • CHA (2000) Children’s Health Act 2000 Public Law 106–310 (codified at 42 USC 201)

    Google Scholar 

  • Chatterjee BB et al (1969) The location of personal sampler filter heads. Am Ind Hyg Assoc J 30(6):643–645

    Article  CAS  PubMed  Google Scholar 

  • Chavance M, Dellatolas G, Lellouch J (1992) Correlated nondifferential misclassifications of disease and exposure: application to a cross-sectional study of the relation between handedness and immune disorders. Int J Epidemiol 21(3):537–546

    Article  CAS  PubMed  Google Scholar 

  • Collins FS, Manolio TA (2007) Merging and emerging cohorts: necessary but not sufficient. Nature 445(7125):259

    Article  CAS  PubMed  Google Scholar 

  • Cui Y et al (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292

    Article  CAS  PubMed  Google Scholar 

  • Davey Smith G, Ebrahim S (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32(1):1–22

    Article  Google Scholar 

  • Dosemeci M, Wacholder S, Lubin JH (1990) Does nondifferential misclassification of exposure always bias a true effect toward the null value? Am J Epidemiol 132(4):746–748

    CAS  PubMed  Google Scholar 

  • ES G (1991) Re: “Does nondifferential misclassification of exposure always bias a true effect toward the null value?” (Letter). Am J Epidemiol 134(4):440-1

    Google Scholar 

  • Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330(6004):622–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fleming JL, Huang TH, Toland AE (2008) The role of parental and grandparental epigenetic alterations in familial cancer risk. Cancer Res 68(22):9116–9121

    Article  CAS  PubMed  Google Scholar 

  • Gauderman WJ (2002) Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med 21(1):35–50

    Article  PubMed  Google Scholar 

  • Gluckman PD, Hanson MA (2004) Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res 56(3):311–317

    Article  PubMed  Google Scholar 

  • Gray R, Wheatley K (1991) How to avoid bias when comparing bone marrow transplantation with chemotherapy. Bone Marrow Transplant 7(Suppl 3):9–12

    PubMed  Google Scholar 

  • Hemstreet GP 3rd et al (2001) Biomarker risk assessment and bladder cancer detection in a cohort exposed to benzidine. J Natl Cancer Inst 93(6):427–436

    Article  PubMed  Google Scholar 

  • Hernan MA et al (2008) Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease. Epidemiology 19(6):766–779

    Article  PubMed Central  PubMed  Google Scholar 

  • Hunt JR, White E (1998) Retaining and tracking cohort study members. Epidemiol Rev 20(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hunter DJ (2005) Gene-environment interactions in human diseases. Nat Rev Genet 6(4):287–298

    Article  CAS  PubMed  Google Scholar 

  • Jacob J, Seidel A (2002) Biomonitoring of polycyclic aromatic hydrocarbons in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 778(1–2):31–47

    Article  CAS  PubMed  Google Scholar 

  • Jager KJ et al (2008) Confounding: what it is and how to deal with it. Kidney Int 73(3):256–260

    Article  CAS  PubMed  Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262

    Article  CAS  PubMed  Google Scholar 

  • Last JM (2001) A dictionary of epidemiology, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Koepsell TD, Weiss NS (2003) Epidemiologic methods: studying the occurrence of illness. Oxford University Press, New York

    Google Scholar 

  • Kristensen P (1992) Bias from nondifferential but dependent misclassification of exposure and outcome. Epidemiology 3(3):210–215

    Article  CAS  PubMed  Google Scholar 

  • Kupper LL, McMichael AJ, Spirtas R (1975) A hybrid epidemiologic study design useful in estimating relative risk. J Am Stat Assoc 70:524–528

    Google Scholar 

  • Last J, Spasoff R, Harris S (2001) A dictionary of epidemiology. Oxford University Press, New York

    Google Scholar 

  • Lioy PJ (1995) Measurement methods for human exposure analysis. Environ Health Perspect 103(Suppl 3):35–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Little RR, Sacks DB (2009) HbA1c: how do we measure it and what does it mean? Curr Opin Endocrinol Diabetes Obes 16(2):113–118

    Article  PubMed  Google Scholar 

  • Liu CY et al (2012) Design and analysis issues in gene and environment studies. Environ Health 11:93

    Article  PubMed Central  PubMed  Google Scholar 

  • Lubin JH, Gail MH (1984) Biased selection of controls for case-control analyses of cohort studies. Biometrics 40(1):63–75

    Article  CAS  PubMed  Google Scholar 

  • Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5(11):845–856

    Article  CAS  PubMed  Google Scholar 

  • Maclure M (1991) The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol 133(2):144–153

    CAS  PubMed  Google Scholar 

  • Manolio TA (2009) Cohort studies and the genetics of complex disease. Nat Genet 41(1):5–6

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA, Bailey-Wilson JE, Collins FS (2006) Genes, environment and the value of prospective cohort studies. Nat Rev Genet 7(10):812–820

    Article  CAS  PubMed  Google Scholar 

  • Marsh DO et al (1980) Fetal methylmercury poisoning: clinical and toxicological data on 29 cases. Ann Neurol 7(4):348–353

    Article  CAS  PubMed  Google Scholar 

  • Medlin J (2001) Sister study hopes to answer breast cancer questions. Environ Health Perspect 109(8):A368–A369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michels KB (2010) The promises and challenges of epigenetic epidemiology. Exp Gerontol 45(4):297–301

    Article  PubMed  Google Scholar 

  • Miettinen O (1982) Design options in epidemiologic research. An update. Scand J Work Environ Health 8(Suppl 1):7–14

    PubMed  Google Scholar 

  • Montgomery SM, Ekbom A (2002) Smoking during pregnancy and diabetes mellitus in a British longitudinal birth cohort. BMJ 324(7328):26–27

    Article  PubMed Central  PubMed  Google Scholar 

  • Morgenstern H, Thomas D (1993) Principles of study design in environmental epidemiology. Environ Health Perspect 101(Suppl 4):23–38

    Article  PubMed Central  PubMed  Google Scholar 

  • NRC (1987) Biological markers in environmental health research. Environ Health Perspect 74:3–9

    Google Scholar 

  • Perera FP, Weinstein IB (1982) Molecular epidemiology and carcinogen-DNA adduct detection: new approaches to studies of human cancer causation. J Chron Dis 35(7):581–600

    Article  CAS  PubMed  Google Scholar 

  • Prentice RL, Pyke R (1979) Logistic disease incidence models and case-control studies. Biometrika 66:403–411

    Article  Google Scholar 

  • Rappaport SM (2011) Implications of the exposome for exposure science. J Expo Sci Environ Epidemiol 21(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Rodier PM (2004) Environmental causes of central nervous system maldevelopment. Pediatrics 113(4 Suppl):1076–1083

    PubMed  Google Scholar 

  • Rothman KJ, Greenland S (1998a) Modern epidemiology, 2nd edn. Lippincott-Raven Press, Philadelphia

    Google Scholar 

  • Rothman KJ, Greenland S (1998b) Case-control studies. In: Rothman KJ, Greenland S (eds) Modern epidemiology, 2nd edn. Lippincott-Raven, Philadelphia, pp 93–114

    Google Scholar 

  • Rothman N, Stewart WF, Schulte PA (1995) Incorporating biomarkers into cancer epidemiology: a matrix of biomarker and study design categories. Cancer Epidemiol Biomarkers Prev 4(4):301–311

    CAS  PubMed  Google Scholar 

  • Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9(2):129–140

    Article  CAS  PubMed  Google Scholar 

  • Talens RP et al (2010) Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J 24(9):3135–3144

    Article  CAS  PubMed  Google Scholar 

  • Thomas D (2010) Gene – environment-wide association studies: emerging approaches. Nat Rev Genet 11(4):259–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tilson HA, Jacobson JL, Rogan WJ (1990) Polychlorinated biphenyls and the developing nervous system: cross-species comparisons. Neurotoxicol Teratol 12(3):239–248

    Article  CAS  PubMed  Google Scholar 

  • Tseng WP (1977) Effects and dose – response relationships of skin cancer and blackfoot disease with arsenic. Environ Health Perspect 19:109–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tseng WP et al (1968) Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40(3):453–463

    CAS  PubMed  Google Scholar 

  • van Rein N et al (2014) Suspected survivor bias in case-control studies: stratify on survival time and use a negative control. J Clin Epidemiol 67(2):232–235

    Article  PubMed  Google Scholar 

  • Wacholder S et al (1992) Selection of controls in case-control studies. II. Types of controls. Am J Epidemiol 135(9):1029–1041

    CAS  PubMed  Google Scholar 

  • Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388

    Article  CAS  PubMed  Google Scholar 

  • Weinberg CR, Umbach DM, Greenland S (1994) When will nondifferential misclassification of an exposure preserve the direction of a trend? Am J Epidemiol 140(6):565–571

    CAS  PubMed  Google Scholar 

  • Weinberg CR et al (2007) Using risk-based sampling to enrich cohorts for endpoints, genes, and exposures. Am J Epidemiol 166(4):447–455

    Article  PubMed Central  PubMed  Google Scholar 

  • Weis BK et al (2005) Personalized exposure assessment: promising approaches for human environmental health research. Environ Health Perspect 113(7):840–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White JE (1982) A two stage design for the study of the relationship between a rare exposure and a rare disease. Am J Epidemiol 115(1):119–128

    CAS  PubMed  Google Scholar 

  • Whittemore AS (1981) The efficiency of synthetic retrospective studies. Biom J 23:73–78

    Article  Google Scholar 

  • Whittemore AS, McMillan A (1982) Analyzing occupational cohort data: application to U.S. uranium miners. In: Prentice RL, Whittemore AS (eds) Environmental epidemiology: risk assessment. SIAM, Philadelphia, pp 65–81

    Google Scholar 

  • Wiencke JK et al (1991) Individual susceptibility to induced chromosome damage and its implications for detecting genotoxic exposures in human populations. Cancer Res 51(19):5266–5269

    CAS  PubMed  Google Scholar 

  • Willett WC et al (2007) Merging and emerging cohorts: not worth the wait. Nature 445(7125):257–258

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Yu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Liu, CY. (2015). Epidemiology of Environmental Health. In: Su, L., Chiang, Tc. (eds) Environmental Epigenetics. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6678-8_2

Download citation

Publish with us

Policies and ethics