Diabetes and Metabolic Syndrome

Part of the Molecular and Integrative Toxicology book series (MOLECUL)

Abstract

Diabetes is one of the major health challenges in the United States and worldwide. There are ~8.3 % of Americans have diabetes, with type 2 diabetes accounts for 95 % of the cases. Both human and animal studies have suggested that air pollution is an important environmental risk factor for diabetes and metabolic syndrome. However, the underlying mechanism are largely unknown. Recent studies indicate multiple system and mechanisms involved in this process. In this chapter, we will summarize both epidemiological and experimental evidence showing the promotive effect of air pollution on diabetes.

Keywords

Air pollution PM2.5 Diabetes Metabolic disease Insulin resistance 

Notes

Acknowledgement

This work was supported by a grant from US EPA (R834797) and grants from NIH (RO1 ES015146, R01ES017290 and R21 DK088522).

References

  1. Andersen ZJ, Raaschou-Nielsen O, Ketzel M, Jensen SS, Hvidberg M, Loft S et al (2012) Diabetes incidence and long-term exposure to air pollution: a cohort study. Diabetes Care 35(1):92–98CrossRefPubMedCentralPubMedGoogle Scholar
  2. Balcells M, Martorell J, Olive C, Santacana M, Chitalia V, Cardoso AA et al (2010) Smooth muscle cells orchestrate the endothelial cell response to flow and injury. Circulation. [In Vitro Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 121(20):2192–2199Google Scholar
  3. Block ML, Calderon-Garciduenas L (2009) Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. [Research Support, N.I.H., Extramural Review]. 32(9):506–516Google Scholar
  4. Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M et al (2004) Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. [Consensus Development Conference Review]. 109(21):2655–2671Google Scholar
  5. Brook RD, Jerrett M, Brook JR, Bard RL, Finkelstein MM (2008) The relationship between diabetes mellitus and traffic-related air pollution. J Occup Environ Med 50(1):32–38CrossRefPubMedGoogle Scholar
  6. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV et al (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121(21):2331–2378CrossRefPubMedGoogle Scholar
  7. Brook RD, Xu X, Bard RL, Dvonch JT, Morishita M, Kaciroti N et al (2013a) Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution. Sci Total Environ. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. 448:66–71Google Scholar
  8. Brook RD, Cakmak S, Turner MC, Brook JR, Crouse DL, Peters PA et al (2013b) Long-term fine particulate matter exposure and mortality from diabetes in Canada. Diabetes Care 36(10):3313–3320CrossRefPubMedCentralPubMedGoogle Scholar
  9. Brown MS, Goldstein JL (2008) Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. [Comment Review]. 7(2):95–96Google Scholar
  10. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. 410(6824):37–40Google Scholar
  11. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. [Review]. 354(6):610–621Google Scholar
  12. Chen H, Burnett RT, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD et al (2013) Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. Environ Health Perspect 121(7):804–810Google Scholar
  13. Chuang KJ, Yan YH, Chiu SY, Cheng TJ (2011) Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in Taiwan. Occup Environ Med 68(1):64–68CrossRefPubMedGoogle Scholar
  14. Coogan PF, White LF, Jerrett M, Brook RD, Su JG, Seto E et al (2012) Air pollution and incidence of hypertension and diabetes in African American women living in Los Angeles. Circulation 125(6):767–772Google Scholar
  15. Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA (2009) p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med. [Review]. 15(8):369–379Google Scholar
  16. De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC et al (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinol. [Research Support, Non-U.S. Gov’t]. 146(10):4192–4199Google Scholar
  17. DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. [Research Support, U.S. Gov’t, P.H.S.]. 237(3):E214–E223Google Scholar
  18. Deiuliis JA, Kampfrath T, Zhong J, Oghumu S, Maiseyeu A, Chen LC et al (2011) Pulmonary T cell activation in response to chronic particulate air pollution. Am J Physiol Lung Cell Mol Physiol 9Google Scholar
  19. Devlin RB, Duncan KE, Jardim M, Schmitt MT, Rappold AG, Diaz-Sanchez D (2012) Controlled exposure of healthy young volunteers to ozone causes cardiovascular effects. Circulation 126(1):104–111CrossRefPubMedGoogle Scholar
  20. Fonken LK, Xu X, Weil ZM, Chen G, Sun Q, Rajagopalan S et al (2011) Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol Psychiatry. [Research Support, N.I.H., Extramural]. 16(10):987–995, 973Google Scholar
  21. Goldberg MS, Burnett RT, Stieb DM, Brophy JM, Daskalopoulou SS, Valois MF et al (2013) Associations between ambient air pollution and daily mortality among elderly persons in Montreal, Quebec. Sci Total Environ. [Research Support, Non-U.S. Gov’t]. 463–464:931–942Google Scholar
  22. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol. [Research Support, Non-U.S. Gov’t Review]. 3(1):23–35Google Scholar
  23. Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G et al (2008) Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133(2):235–249CrossRefPubMedGoogle Scholar
  24. Ito A, Suganami T, Yamauchi A, Degawa-Yamauchi M, Tanaka M, Kouyama R et al (2008) Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue. J Biol Chem. [Research Support, Non-U.S. Gov’t]. 283(51):35715–35723Google Scholar
  25. Jitrapakdee S (2012) Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol. [Research Support, Non-U.S. Gov’t Review]. 44(1):33–45Google Scholar
  26. Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. 106(4):473–481Google Scholar
  27. Kampfrath T, Maiseyeu A, Ying Z, Shah Z, Deiuliis JA, Xu X et al (2011) Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ Res 108(6):716–726CrossRefPubMedCentralPubMedGoogle Scholar
  28. Kelishadi R, Mirghaffari N, Poursafa P, Gidding SS (2009) Lifestyle and environmental factors associated with inflammation, oxidative stress and insulin resistance in children. Atherosclerosis 203(1):311–319CrossRefPubMedGoogle Scholar
  29. Kerkhof M, Postma DS, Brunekreef B, Reijmerink NE, Wijga AH, de Jongste JC et al (2010) Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma. Thorax. [Multicenter Study Research Support, Non-U.S. Gov’t]. 65(8):690–697Google Scholar
  30. Kramer U, Herder C, Sugiri D, Strassburger K, Schikowski T, Ranft U et al (2010) Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study. Environ Health Perspect 118(9):1273–1279CrossRefPubMedCentralPubMedGoogle Scholar
  31. Laing S, Wang G, Briazova T, Zhang C, Wang A, Zheng Z et al (2010) Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 299(4):C736–C749Google Scholar
  32. Lamkanfi M, Kanneganti TD (2010) Nlrp3: an immune sensor of cellular stress and infection. Int J Biochem Cell Biol. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. 42(6):792–795Google Scholar
  33. Lawson WE, Cheng DS, Degryse AL, Tanjore H, Polosukhin VV, Xu XC et al (2011) Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci U S A 108(26):10562–10567CrossRefPubMedCentralPubMedGoogle Scholar
  34. Lepper PM, Schumann C, Triantafilou K, Rasche FM, Schuster T, Frank H et al (2007) Association of lipopolysaccharide-binding protein and coronary artery disease in men. J Am Coll Cardiol 50(1):25–31CrossRefPubMedGoogle Scholar
  35. Li Z, Potts EN, Piantadosi CA, Foster WM, Hollingsworth JW (2010) Hyaluronan fragments contribute to the ozone-primed immune response to lipopolysaccharide. J Immunol. [Research Support, N.I.H., Extramural]. 185(11):6891–6898Google Scholar
  36. Li Z, Potts-Kant EN, Garantziotis S, Foster WM, Hollingsworth JW (2011) Hyaluronan signaling during ozone-induced lung injury requires TLR4, MyD88, and TIRAP. PloS One. [Research Support, N.I.H., Extramural]. 6(11):e27137Google Scholar
  37. Liu C, Ying Z, Harkema J, Sun Q, Rajagopalan S (2013a) Epidemiological and experimental links between air pollution and type 2 diabetes. Toxicol Pathol. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. 41(2):361–373Google Scholar
  38. Liu C, Xu X, Bai Y, Wang TY, Rao X, Wang A et al (2013b) Air pollution-mediated susceptibility to inflammation and insulin resistance: influence of CCR2 pathways in mice. Environ Health Perspect 22Google Scholar
  39. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307(5708):384–387CrossRefPubMedGoogle Scholar
  40. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117(1):175–184CrossRefPubMedCentralPubMedGoogle Scholar
  41. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. [Research Support, Non-U.S. Gov’t Review]. 27:451–483Google Scholar
  42. Mendez R, Zheng Z, Fan Z, Rajagopalan S, Sun Q, Zhang K (2013) Exposure to fine airborne particulate matter induces macrophage infiltration, unfolded protein response, and lipid deposition in white adipose tissue. Am J Transl Res 5(2):224–234PubMedCentralPubMedGoogle Scholar
  43. Morrison DK, Davis RJ (2003) Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol. [Research Support, U.S. Gov’t, P.H.S. Review]. 19:91–118Google Scholar
  44. Murea M, Ma L, Freedman BI (2012) Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Review Diabet Stud: RDS. [Review]. Spring 9(1):6–22Google Scholar
  45. Nakane H (2012) Translocation of particles deposited in the respiratory system: a systematic review and statistical analysis. Environ Health Prev Med 17(4):263–274CrossRefPubMedCentralPubMedGoogle Scholar
  46. Odegaard JI, Chawla A (2011) Alternative macrophage activation and metabolism. Annu Rev Pathol. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. 6:275–297Google Scholar
  47. Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM (2012) Increased macrophage migration into adipose tissue in obese mice. Diabetes. [Research Support, N.I.H., Extramural]. 61(2):346–354Google Scholar
  48. Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ (2012) Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev 248(1):188–204CrossRefPubMedGoogle Scholar
  49. O’Neill MS, Veves A, Zanobetti A, Sarnat JA, Gold DR, Economides PA et al (2005) Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. Circulation. [Meta-Analysis Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. 111(22):2913–2920Google Scholar
  50. Osorio F, Lambrecht B, Janssens S (2013) The UPR and lung disease. Semin Immunopathol. [Review]. 35(3):293–306Google Scholar
  51. Pearson JF, Bachireddy C, Shyamprasad S, Goldfine AB, Brownstein JS (2010) Association between fine particulate matter and diabetes prevalence in the U.S. Diabetes Care 33(10):2196–2201CrossRefPubMedCentralPubMedGoogle Scholar
  52. Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A et al (2009) Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 296(5):E1003–E1012CrossRefPubMedCentralPubMedGoogle Scholar
  53. Proudfoot AE (2002) Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol. [Review]. 2(2):106–115Google Scholar
  54. Puett RC, Hart JE, Schwartz J, Hu FB, Liese AD, Laden F (2011) Are particulate matter exposures associated with risk of type 2 diabetes? Environ Health Perspect 119(3):384–389CrossRefPubMedCentralPubMedGoogle Scholar
  55. Purkayastha S, Zhang H, Zhang G, Ahmed Z, Wang Y, Cai D (2011) Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc Natl Acad Sci U S A. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 108(7):2939–2944Google Scholar
  56. Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. [Review]. 21(12):1443–1455Google Scholar
  57. Raaschou-Nielsen O, Sorensen M, Ketzel M, Hertel O, Loft S, Tjonneland A et al (2013) Long-term exposure to traffic-related air pollution and diabetes-associated mortality: a cohort study. Diabetologia. [Research Support, Non-U.S. Gov’t]. 56(1):36–46Google Scholar
  58. Rajagopalan S, Brook RD (2012) The indoor-outdoor air-pollution continuum and the burden of cardiovascular disease: an opportunity for improving global health. Glob Heart 7(3):207–213CrossRefPubMedCentralPubMedGoogle Scholar
  59. Ryan KK, Woods SC, Seeley RJ (2012) Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab 15(2):137–149CrossRefPubMedCentralPubMedGoogle Scholar
  60. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806CrossRefPubMedGoogle Scholar
  61. Sears ME, Genuis SJ (2012) Environmental determinants of chronic disease and medical approaches: recognition, avoidance, supportive therapy, and detoxification. J Environ Public Health. [Research Support, Non-U.S. Gov’t Review]. 2012:356798Google Scholar
  62. Shoenfelt J, Mitkus RJ, Zeisler R, Spatz RO, Powell J, Fenton MJ et al (2009) Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter. J Leukoc Biology. [Research Support, N.I.H., Extramural]. 86(2):303–312Google Scholar
  63. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. 106(2):171–176Google Scholar
  64. Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB et al (2009) Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation 119(4):538–546CrossRefPubMedGoogle Scholar
  65. Sun L, Yu Z, Ye X, Zou S, Li H, Yu D et al (2010) A marker of endotoxemia is associated with obesity and related metabolic disorders in apparently healthy Chinese. Diabetes Care 33(9):1925–1932CrossRefPubMedCentralPubMedGoogle Scholar
  66. Sun Z, Mukherjee B, Brook RD, Gatts GA, Yang F, Sun Q et al (2013) Air-Pollution and Cardiometabolic Diseases (AIRCMD): a prospective study investigating the impact of air pollution exposure and propensity for type II diabetes. Sci Total Environ. [Research Support, N.I.H., Extramural]. 448:72–78Google Scholar
  67. Takeda K, Akira S (2007) Toll-like receptors. Curr Protoc Immunol/edited by John E Coligan [et al.]. Chapter 14:Unit 14 2Google Scholar
  68. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. 7(2):85–96Google Scholar
  69. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO et al (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. 122(1):153–162Google Scholar
  70. Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW (2013) Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. 62(8):2629–2634Google Scholar
  71. Thiering E, Cyrys J, Kratzsch J, Meisinger C, Hoffmann B, Berdel D et al (2013) Long-term exposure to traffic-related air pollution and insulin resistance in children: results from the GINIplus and LISAplus birth cohorts. Diabetologia. [Research Support, Non-U.S. Gov’t]. 56(8):1696–1704Google Scholar
  72. Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP et al (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest. [Research Support, N.I.H., Extramural]. 117(4):902–909Google Scholar
  73. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL et al (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 17(2):179–188Google Scholar
  74. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086CrossRefPubMedGoogle Scholar
  75. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K et al (2006) CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 116(1):115–124Google Scholar
  76. Xu X, Yavar Z, Verdin M, Ying Z, Mihai G, Kampfrath T et al (2010) Effect of early particulate air pollution exposure on obesity in mice: role of p47phox. Arterioscler Thromb Vasc Biol 30(12):2518–2527CrossRefPubMedCentralPubMedGoogle Scholar
  77. Xu X, Liu C, Xu Z, Tzan K, Zhong M, Wang A et al (2011a) Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue. Toxicol Sci 124(1):88–98CrossRefPubMedCentralPubMedGoogle Scholar
  78. Xu Z, Xu X, Zhong M, Hotchkiss IP, Lewandowski RP, Wagner JG et al (2011b) Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues. Part Fibre Toxicol. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. 8:20Google Scholar
  79. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 135(1):61–73Google Scholar
  80. Zheng Z, Xu X, Zhang X, Wang A, Zhang C, Huttemann M et al (2013) Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model. J Hepatol. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 58(1):148–154Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Xiaoquan Rao
    • 1
  • Cuiqing Liu
    • 2
    • 3
  • Sanjay Rajagopalan
    • 1
  1. 1.Division of Cardiovascular Medicine, Department of MedicineUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusUSA
  3. 3.Department of Physiology, Medical CollegeHangzhou Normal UniversityHangzhouChina

Personalised recommendations