Skip to main content

Kinematics of the Natural and Replaced Knee

  • Chapter
Total Knee Arthroplasty

Abstract

The human knee comprises two articulating joints: the tibiofemoral joint and the patellofemoral joint, and a complex soft tissue envelope (Fig. 2.1). It has evolved to meet our current locomotion needs over millions of years, and is relatively unique within the mammalian world [1–4]. Few mammals can stand fully extended on their hind legs and even fewer can walk in a bipedal stance allowing the body to rotate around the extended knee [5]. In contrast to other mammals, the human knee has, therefore, evolved to withstand the large lateral quadriceps forces required to achieve this motion. This, alongside many other evolutionary developments, has resulted in the complex structure we term the human knee.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeman MA, Pinskerova V. The movement of the knee studied by mri. Clin Orthop Relat Res. 2003;410:35–43.

    Google Scholar 

  2. Frankel VH, Burstein AH, Brooks DB. Biomechanics of internal derangement of the knee pathomechanics as determined by analysis of the instant centers of motion. J Bone Joint Surg. 1971;53(5):945–77.

    CAS  PubMed  Google Scholar 

  3. Goodfellow J, O’Connor J. The mechanics of the knee and prosthesis design. J Bone Joint Surg Br Vol. 1978;60-B(3):358–69.

    CAS  Google Scholar 

  4. Kurosawa H, Walker PS, Abe S, Garg A, Hunter T. Geometry and motion of the knee for implant and orthotic design. J Biomech. 1985;18(7):487–99.

    Article  CAS  PubMed  Google Scholar 

  5. Lovejoy CO. Evolution of human walking. Sci Am. 1988;259(5):118–25.

    Article  CAS  PubMed  Google Scholar 

  6. Palastanga N, Field D, Soames R. Anatomy & human movement. 4th ed. Oxford: Butterworth-Heinemann; 2002.

    Google Scholar 

  7. Freeman MR, Pinskerova V. The movement of the normal tibio-femoral joint. J Biomech. 2005;38(2):197–208.

    Article  CAS  PubMed  Google Scholar 

  8. Pinskerova V, Maquet P, Freeman M. Writings on the knee between 1836 and 1917. J Bone Joint Surg Br Vol. 2000;82-B(8):1100–2.

    Article  Google Scholar 

  9. Weber W, Weber E (trans: Maquet P, Furlong R). Mechanics of the human walking apparatus. Berlin: Springer; 1992.

    Google Scholar 

  10. Chun YM, Kim SJ, Kim HS. Evaluation of the mechanical properties of posterolateral structures and supporting posterolateral instability of the knee. J Orthop Res. 2008;26(10):1371–6.

    Article  PubMed  Google Scholar 

  11. Pasque C, Noyes FR, Gibbons M, Levy M, Grood E. The role of the popliteofibular ligament and the tendon of popliteus in providing stability in the human knee. J Bone Joint Surg. 2003;85(2):292–8.

    Article  CAS  Google Scholar 

  12. Brantigan OC, Voshell AF. The mechanics of the ligaments and menisci of the knee joint. J Bone Joint Surg. 1941;23(1):44–66.

    Google Scholar 

  13. Hill PF. Tibialfemoral movement 2: the loaded and unloaded living knee studied by mri. J Bone Joint Surg. 2000;82:1196.

    Google Scholar 

  14. Victor J, Labey L, Wong P, Innocenti B, Bellemans J. The influence of muscle load on tibiofemoral knee kinematics. J Orthop Res. 2010;28(4):419–28.

    PubMed  Google Scholar 

  15. Gill H, Biden E, Cooke P, O’connor J. Gait analysis. In: Pysent PB, Carr AJ, Fairbank J, editors. Gait analysis. Edinburgh/New York: Butterworth-Heinemann; 1997.

    Google Scholar 

  16. Wolterbeek N, Garling EH, Mertens BJ, Nelissen RGHH, Valstar ER. Kinematics and early migration in single-radius mobile- and fixed-bearing total knee prostheses. Clin Biomech. 2012;27(4):398–402.

    Article  CAS  Google Scholar 

  17. Cappozzo A, Della Croce U, Leardini A, Chiari L. Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture. 2005;21(2):186–96.

    PubMed  Google Scholar 

  18. Woltring HJ. Representation and calculation of 3-d joint movement. Hum Mov Sci. 1991;10(5):603–16.

    Article  Google Scholar 

  19. Eckhoff D, Hogan C, Dimatteo L, Robinson M, Bach J. ABJS best papers. Clin Orthop Relat Res. 2007;261:238–44.

    Google Scholar 

  20. Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG. The axes of rotation of the knee. Clin Orthop Relat Res. 1993;290:259–68.

    PubMed  Google Scholar 

  21. Churchill DJ, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res. 1998;356:111–8.

    Article  PubMed  Google Scholar 

  22. Soudan K, Van Audekercke R, Martens M. Methods, difficulties and inaccuracies in the study of human joint kinematics and pathokinematics by the instant axis concept. Example: the knee joint. J Biomech. 1979;12(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  23. Smidt GL. Biomechanical analysis of knee flexion and extension. J Biomech. 1973;6(1):79–92.

    Article  CAS  PubMed  Google Scholar 

  24. Elias SG, Freeman MA, Gokcay EI. A correlative study of the geometry and anatomy of the distal femur. Clin Orthop Relat Res. 1990;260:98.

    PubMed  Google Scholar 

  25. Eckhoff DG, Bach JM, Spitzer VM, Reinig KD, Baqur MM, Baldini TH, Flannery NM. Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J Bone Joint Surg Am. 2005;87(Supplement 2):71–80.

    Article  PubMed  Google Scholar 

  26. Eckhoff DG, Dwyer TF, Bach JM, Spitzer VM, Reinig KD. 3D morphology of the distal part of the femur viewed in virtual reality. J Bone Joint Surg. 2001;83(S2P1):43–5.

    Google Scholar 

  27. Eckhoff DG, Dwyer TF, Bach JM, Spitzer VM, Reining KD. 3D morphology and kinematics of the distal part of the femur viewed in virtual reality part 2. J Bone Joint Surg. 2003;85:97–104.

    PubMed  Google Scholar 

  28. Iwaki H, Piskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg. 2000;82:1189–95.

    Google Scholar 

  29. Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T. In vivo 3D knee kinematics using a biplanar imaging technique. Clin Orthop Relat Res. 2001;388:157–66.

    Google Scholar 

  30. Komistek RD. In vivo fluroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.

    Article  PubMed  Google Scholar 

  31. Leszko F, Hovinga KR, Lerner AL, Komistek RD, Mahfouz MR. In vivo normal knee kinematics: is ethnicity or gender an influencing factor? Clin Orthop Relat Res. 2010;469(1):95–106.

    Article  PubMed Central  Google Scholar 

  32. Schindler OS, Scott WN. Basic kinematics and biomechanics of the patello-femoral joint. Acta Orthop Belg. 2011;77:421–31.

    PubMed  Google Scholar 

  33. Barink M, Meijerink H, Verdonschot N, Kampen A, Waal Malefijt M. Asymmetrical total knee arthroplasty does not improve patella tracking: a study without patella resurfacing. Knee Surg Sports Traumatol Arthrosc. 2006;15(2):184–91.

    Article  PubMed  Google Scholar 

  34. Komistek RD, Mahfouz MR, Bertin KC, Rosenberg A, Kennedy W. In vivo determination of total knee arthroplasty kinematics. J Arthroplast. 2008;23(1):41–50.

    Article  Google Scholar 

  35. Karrholm J, Brandsson S, Freeman MA. Tibialfemoral movement 4: changes of axial tibial rotation caused by forced rotation at the weight bearing knee studied by RSA. J Bone Joint Surg. 2000;82:1201–3.

    Article  CAS  Google Scholar 

  36. Massin P, Boyer P, Hajage D, Kilian P, Tubach F. Intra-operative navigation of knee kinematics and the influence of osteoarthritis. Knee. 2011;18(4):259–64.

    Article  PubMed  Google Scholar 

  37. Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MA, Yamano Y. Tibiofemoral movement 3: full flexion in the living knee studied by mri. J Bone Joint Surg. 2000;82:1199–2000.

    Article  CAS  Google Scholar 

  38. Victor J, Wong P, Witvrouw E, Sloten JV, Bellemans J. How isometric are the medial patellofemoral, superficial medial collateral, and lateral collateral ligaments of the knee? Am J Sports Med. 2009;37(10):2028–36.

    Article  PubMed  Google Scholar 

  39. Wyss U, Kim IY, Cooke D, Amiri S. Mechanics of the passive knee joint. Part 2: interaction between the ligaments and the articular surfaces in guiding the joint motion. Proc IMechE Part H J Eng Med. 2007;221(8):821–32.

    Article  Google Scholar 

  40. Wilson DR, Feikes JD, Zavatsky AB, O’connor JJ. The components of passive knee movement are coupled to flexion angle. J Biomech. 2000;33(4):465–73.

    Article  CAS  PubMed  Google Scholar 

  41. Heller MO, Konig C, Graichen H, Hinterwimmer S, Ehrig RM, Duda GN, Taylor WR. A new model to predict in vivo human knee kinematics under physiological-like muscle activation. J Biomech. 2007;40 Suppl 1:S45–53.

    Article  PubMed  Google Scholar 

  42. Robinson JR, Bull AMJ, Thomas RRD, Amis AA. The role of the medial collateral ligament and posteromedial capsule in controlling knee laxity. Am J Sports Med. 2006;34(11):1815–23.

    Article  PubMed  Google Scholar 

  43. Belvedere C, Leardini A, Ensini A, Bianchi L, Catani F, Giannini S. Three-dimensional patellar motion at the natural knee during passive flexion/extension. An in vitro study. J Orthop Res. 2009;27(11):1426–31.

    Article  PubMed  Google Scholar 

  44. Belvedere C, Catani F, Ensini A, Moctezuma De La Barrera JL, Leardini A. Patellar tracking during total knee arthroplasty: an in vitro feasibility study. Knee Surg Sports Traumatol Arthrosc. 2007;15(8):985–93.

    Article  CAS  PubMed  Google Scholar 

  45. Von Eisenhart-Rothe R, Vogl T, Englmeier KH, Graichen H. A new in vivo technique for determination of femoro-tibial and femoro-patellar 3D kinematics in total knee arthroplasty. J Biomech. 2007;40(14):3079–88.

    Article  Google Scholar 

  46. Stiehl J. Kinematics of the patellofemoral joint in total knee arthroplasty. J Arthroplast. 2001;16(6):706–14.

    Article  CAS  Google Scholar 

  47. Iranpour F, Merican AM, Baena FRY, Cobb JP, Amis AA. Patellofemoral joint kinematics: the circular path of the patella around the trochlear axis. J Orthop Res. 2010;28(5):589–94.

    PubMed  Google Scholar 

  48. Amis AA, Senavongse W, Bull AMJ. Patellofemoral kinematics during knee flexion-extension: an in vitro study. J Orthop Res. 2006;24(12):2201–11.

    Article  PubMed  Google Scholar 

  49. Katchburian MV, Bull A, Shih YF, Heatley FW, Amis A. Measurement of patella tracking: assessment and analysis of the literature. Clin Orthop Relat Res. 2003;412:241–59.

    Article  PubMed  Google Scholar 

  50. Merican AM, Ghosh KM, Iranpour F, Deehan DJ, Amis AA. The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2011;19(9):1479–87.

    Article  CAS  PubMed  Google Scholar 

  51. Hsu HC, Luo ZP, Rand JA, An KN. Influence of patellar thickness on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty. J Arthroplast. 1996;11(1):69–80.

    Google Scholar 

  52. Sheehan FT, Zajac FE, Drace JE. In vivo tracking of the human patella using cine phase contrast magnetic resonance imaging. J Biomech Eng. 1999;121(6):650–6.

    Article  CAS  PubMed  Google Scholar 

  53. Suzuki T, Hosseini A, Li JS, Gill TJT, Li G. In vivo patellar tracking and patellofemoral cartilage contacts during dynamic stair ascending. J Biomech. 2012;45(14):2432–7.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Heinert G, Kendoff D, Preiss S, Gehrke T, Sussmann P. Patellofemoral kinematics in mobile-bearing and fixed-bearing posterior stabilised total knee replacements: a cadaveric study. Knee Surg Sports Traumatol Arthrosc. 2010;19(6):967–72.

    Article  PubMed  Google Scholar 

  55. Baldwin MA, Clary C, Maletsky LP, Rullkoetter PJ. Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend. J Biomech. 2009;42(14):2341–8.

    Article  PubMed  Google Scholar 

  56. Stiehl JB. A clinical overview patellofemoral joint and application to total knee arthroplasty. J Biomech. 2005;38:209–14.

    Article  PubMed  Google Scholar 

  57. Ranawat CS. History of total knee replacement. J South Orthop Assoc. 2002;11(4):218–26.

    PubMed  Google Scholar 

  58. Callaghan JJ, Rosenberg AG, Rubash HE, Simonian PT, Wickiewicz TL. The adult knee. Philadelphia: Lippincott Williams & Wilkins; 2003.

    Google Scholar 

  59. Ostermeier S, Stukenborg-Colsman C. Quadriceps force after TKA with femoral single radius. Acta Orthop. 2011;82(3):339–43.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Ward TR, Pandit H, Hollinghurst D, Moolgavkar P, Zavatsky AB, Gill HS, Thomas NP, Murray DW. Improved quadriceps mechanical advantage in single radius tkrs is not due to increased patella tendon moment arm. The Knee. 2012;19(5):564–70.

    Google Scholar 

  61. Fitzpatrick CK, Rullkoetter PJ. Influence of patellofemoral articular geometry and materials on mechanics of the unresurfaced patella. J Biomech. 2012;45(11):1909–15.

    Article  PubMed  Google Scholar 

  62. Robinson RP. The early innovators of today’s resurfacing condylar knees. J Arthroplast. 2005;20(1 S1):2–26.

    Google Scholar 

  63. Mow V. Basic orthopaedic biomechanics and mechano-biology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  64. Sathasivam S, Walker PS. Design forms of total knee replacement. Proc IMechE Part H J Eng Med. 2000;214(1):101–19.

    Article  Google Scholar 

  65. Morrey B. Total joint arthroplasty. 3rd ed. Philadelphia: Churchill-Livingstone; 2003.

    Google Scholar 

  66. Shelburne KB, Pandy MG, Torry MR. Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait. J Biomech. 2004;37(3):313–9.

    Article  PubMed  Google Scholar 

  67. National Joint Registry, 2012. 9th annual report.

    Google Scholar 

  68. Swedish Joint Registry, 2011. Annual report 2011. Registry, S. N. J.

    Google Scholar 

  69. Australian Joint Regestry, 2012. 2012 annual report.

    Google Scholar 

  70. Sharkey PF, Hozack W, Rothman RH, Shastri S, Jacoby SM. Why are total knee arthroplasties failing today? Clin Orthop Relat Res. 2002;404:7–13.

    Article  PubMed  Google Scholar 

  71. Breeman S, Campbell M, Dakin H, Fiddian N, Fitzpatrick R, Grant A, Gray A, Johnston L, Maclennan G, Morris R, Murray D. Patellar resurfacing in total knee replacement: five-year clinical and economic results of a large randomized controlled trial. J Bone Joint Surg Am. 2011;93(16):1473–81.

    Article  PubMed  Google Scholar 

  72. Lygre SHL, Espehaug B, Havelin LI, Vollset SE, Furnes O. Failure of total knee arthroplasty with or without patella resurfacing. Acta Orthop. 2011;82(3):282–92.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Clements WJ, Miller L, Whitehouse SL, Graves SE, Ryan P, Crawford RW. Early outcomes of patella resurfacing in total knee arthroplasty. Acta Orthop. 2010;81(1):108–13.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Calvisi V, Camillieri G, Lupparelli S. Resurfacing versus nonresurfacing the patella in total knee arthroplasty: a critical appraisal of the available evidence. Arch Orthop Trauma Surg. 2009;129(9):1261–70.

    Article  PubMed  Google Scholar 

  75. Pavlou G, Meyer C, Leonidou A, As-Sultany M, West R, Tsiridis E. Patellar resurfacing in total knee arthroplasty: does design matter? J Bone Joint Surg. 2011;93(14):1301.

    Article  PubMed  Google Scholar 

  76. Forster MC. Patellar resurfacing in total knee arthroplasty for osteoarthritis: a systematic review. Knee. 2004;11:427–30.

    Article  CAS  PubMed  Google Scholar 

  77. Schindler OS. Basic kinematics and biomechanics of the patellofemoral joint part 2: the patella in total knee arthroplasty. Acta Orthop Belg. 2012;78:11–29.

    PubMed  Google Scholar 

  78. Brick GW, Scott RD. The patellofemoral component of total knee arthroplasty. Clin Orthop Relat Res. 1988;231:163–78.

    Google Scholar 

  79. Sigma cr 150 fixed reference surgical technique with high performance instruments [online]. DePuy. Available from: http://www.depuy.com/sites/default/files/products/files/Sigma%20CR150%20Final%20ST.pdf. Accessed 25 July 2013.

  80. Nexgen legacy ® knee lps – flex [online]. Zimmer. Available from: http://www.zimmer.co.uk/content/pdf/en-US/NexGen_LPS_Flex-Fixed_Brochure_(97-5964-101).pdf. Accessed 25 July 2013.

  81. Triathlon knee system surgical protocol. Montreux; 2006

    Google Scholar 

  82. Agc premier instrumentation cr or ps surgical technique [online]. Biomet. Available from: http://www.biomet.co.uk/userfiles/files/Knees/AGC/FLK214%20AGC%20Premier%20ST.pdf. Accessed 25 July 2013.

  83. Vanguard instrumentation options [online]. Biomet. Available from: http://www.biomet.co.uk/resource/1848/System%20Summary.pdf. Accessed 25 July 2013.

  84. Scorpio NRG CR & PS surgical protocol. Montreux; 2009,

    Google Scholar 

  85. Lcs® rps flexion product rationale [online]. DePuy. Available from: http://www.depuy.com/sites/default/files/products/files/9075-16-000-v1-LCS-RPS-PR_EN.pdf. Accessed 25 July 2013.

  86. Knee arthroplasty [online]. B Braun. Available from: http://www.bbraun.com/cps/rde/xchg/bbraun-com/hs.xsl/knee-arthroplasty.html. Accessed 25 July 2013.

  87. Mahoney OM, Kinsey TL, Banks AZ, Banks SA. Rotational kinematics of a modern fixed-bearing posterior stabilized total knee arthroplasty. J Arthroplast. 2009;24(4):641–5.

    Article  Google Scholar 

  88. Catani F, Belvedere C, Ensini A, Feliciangeli A, Giannini S, Leardini A. In-vivo knee kinematics in rotationally unconstrained total knee arthroplasty. J Orthop Res. 2011;29(10):1484–90.

    Article  PubMed  Google Scholar 

  89. Klein GR, Parvizi J, Rapuri VR, Austin MS, Hozack WJ. The effect of tibial polyethylene insert design on range of motion – evaluation of in vivo knee kinematics by a computerized navigation system during total knee arthroplasty. J Arthroplast. 2004;19(8):986–91.

    Google Scholar 

  90. Browne C, Hermida J, Bergula A, Colwelljr C, Dlima D. Patellofemoral forces after total knee arthroplasty: effect of extensor moment arm. Knee. 2005;12(2):81–8.

    Article  PubMed  Google Scholar 

  91. Casino D, Martelli S, Zaffagnini S, Lopomo N, Iacono F, Bignozzi S, Visani A, Marcacci M. Knee stability before and after total and unicondylar knee replacement: in vivo kinematic evaluation utilizing navigation. J Orthop Res. 2009;27(2):202–7.

    Article  PubMed  Google Scholar 

  92. Nagamine R, Whiteside LA, White SE, Mccarthy DS. Patella tracking after total knee arthroplasty. Clin Orthop Relat Res. 1994;304:263–71.

    Google Scholar 

  93. Victor J, Banks S, Bellemans J. Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br Vol. 2005;87-B(5):646–55.

    Article  Google Scholar 

  94. Innocenti B, Labey L, Victor J, Wong P, Bellemans J. An in-vitro study of human knee kinematics: natural vs. replaced joint. In: Sloten J, Verdonck P, Nyssen M, Haueisen J, editors. An in-vitro study of human knee kinematics: natural vs. replaced joint. Berlin/Heidelberg: Springer; 2009.

    Google Scholar 

  95. Catani F, Ensini A, Belvedere C, Feliciangeli A, Benedetti MG, Leardini A, Giannini S. In vivo kinematics and kinetics of a bi-cruciate substituting total knee arthroplasty: a combined fluoroscopic and gait analysis study. J Orthop Res. 2009;27(12):1569–75.

    Article  PubMed  Google Scholar 

  96. Van Duren BH, Pandit H, Beard DJ, Zavatsky AB, Gallagher JA, Thomas NP, Shakespeare DT, Murray DW, Gill HS. How effective are added constraints in improving TKR kinematics? J Biomech. 2007;40 Suppl 1:S31–7.

    Article  PubMed  Google Scholar 

  97. Gamada K, Jayasekera N, Kashif F, Fennema P, Schmotzer H, Banks SA. Does ligament balancing technique affect kinematics in rotating platform, PCL retaining knee arthroplasties? Knee Surg Sports Traumatol Arthrosc. 2008;16(2):160–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Pandit H, Duren B, Price M, Tilley S, Gill H, Thomas N, Murray D. Constraints in posterior-stabilised TKA kinematics: a comparison of two generations of an implant. Knee Surg Sports Traumatol Arthrosc. 2013;21(12):2800–9.

    Article  PubMed  Google Scholar 

  99. Pandit H, Ward T, Hollinghurst D, Beard DJ, Gill HS, Thomas NP, Murray DW. Influence of surface geometry and the cam-post mechanism on the kinematics of total knee replacement. J Bone Joint Surg Br Vol. 2005;87-B(7):940–5.

    Article  Google Scholar 

  100. Duren BH, Pandit H, Price M, Tilley S, Gill HS, Murray DW, Thomas NP. Bicruciate substituting total knee replacement: how effective are the added kinematic constraints in vivo? Knee Surg Sports Traumatol Arthrosc. 2012;20(10):2002–10.

    Article  PubMed  Google Scholar 

  101. Hollinghurst D, Stoney J, Ward T, Robinson BJ, Price AJ, Gill HS, Beard DJ, Dodd C a F, Newman J, Ackroyd CE, Murray DW. Kinematics of compartmental knee replacement – in vivo comparison of four different devices. J Bone Joint Surg Br Vol. 2005;87-B(SUPP III):344.

    Google Scholar 

  102. Belvedere C, Ensini A, Leardini A, Dedda V, Feliciangeli A, Cenni F, Timoncini A, Barbadoro P, Giannini S. Tibio-femoral and patello-femoral joint kinematics during navigated total knee arthroplasty with patellar resurfacing. Knee Surg Sports Traumatol Arthrosc. 2014;22(8):1719–27.

    Google Scholar 

  103. Heinert G, Kendoff D, Preiss S, Gehrke T, Sussmann P. Patellofemoral kinematics in mobile-bearing and fixed-bearing posterior stabilised total knee replacements: a cadaveric study. Knee Surg Sports Traumatol Arthrosc. 2011;19(6):967–72

    Google Scholar 

  104. Tanzer M, Mclean CA, Laxer E, Casey J, Ahmed AM. Effect of femoral component designs on the contact and tracking characteristics of the unresurfaced patella in total knee arthroplasty. Can J Surg. 2001;44(2):127–33.

    Google Scholar 

  105. Armstrong AD, Brien HJC, Dunning CE, King GJW, Johnson JA, Chess DG. Patellar position after total knee arthroplasty. J Arthroplast. 2003;18(4):458–65.

    Google Scholar 

  106. Sawaguchi N, Majima T, Ishigaki T, Mori N, Terashima T, Minami A. Mobile-bearing total knee arthroplasty improves patellar tracking and patellofemoral contact stress in vivo measurements in the same patients. J Arthroplast. 2010;25(6):920–5.

    Article  Google Scholar 

  107. Varadarajan KM, Rubash HE, Li G. Are current total knee arthroplasty implants designed to restore normal trochlear groove anatomy? J Arthroplast. 2011;26(2):274–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinderjit S. Gill PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Coles, L.G., Gheduzzi, S., Miles, A.W., Gill, H.S. (2015). Kinematics of the Natural and Replaced Knee. In: Karachalios, T. (eds) Total Knee Arthroplasty. Springer, London. https://doi.org/10.1007/978-1-4471-6660-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6660-3_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6659-7

  • Online ISBN: 978-1-4471-6660-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics