Skip to main content

The Neurology of Creativity: Focus on Music

  • Chapter
  • First Online:
Creativity and Innovation Among Science and Art

Abstract

Creativity has been a very difficult human quality to study, but is now beginning to be understood at the neurobiological level. The most recent theories suggest that the major lobes of the brain, in particular interactions between the frontal lobes and temporal lobes, are critical for maximizing the potential for creative endeavors. The neural circuitry of the limbic system, as well as catecholaminergic neurotransmitter pathways and their lobar interactions, is also important in the process. Music is one of the most creative and complex of all human activities and appears to involve numerous regions and pathways within the brain. The process of listening to music involves many specialized regions, including the auditory pathways, Heschl’s gyrus, the planum temporale (PT), and auditory association areas. Musical performance involves coordination between the neuromuscular system while playing an instrument, with simultaneous and constant auditory feedback on the quality of the performance and the need for any necessary adjustments. The process of music perception while listening or performing requires acoustical analysis of pitch, melody, and harmony, the use of auditory memories, analysis of musical syntax and emotional responses, and many other functions, all performed over a matter of milliseconds in the dedicated musical neural networks in the brain. In addition, the brains of musicians and non-musicians are now known to be different, with musicians having specialized networks and connections as a result of formal musical training. The origins of music, as well as the anatomical and neurobiological underpinnings of musical perception, performance, and training, are reviewed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., & Schweckendiek, J. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50(8), 1906–1917.

    Google Scholar 

  • Aharon, I., Etcoff, N., Ariely, D., Chabris, C. F., O’Connor, E., & Breiter, H. C. (2001). Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron, 32(3), 537–551.

    Google Scholar 

  • Alossa, N., & Castelli, L. (2009). Amusia and musical functioning. European Neurology, 61(5), 269–277.

    Google Scholar 

  • Altenmüller, E. (2008). Neurology of musical performance. Clinical Medicine, 8(4), 410–413.

    Google Scholar 

  • Altenmüller, E. (2010). The musician’s brain as a model for adaptive and maladaptive plasticity. In F.C. Rose (Ed.), Neurology of music (pp. 103–114). London: Imperial College Press.

    Google Scholar 

  • Amunts, K., Schlaug, G., Jäncke, L., Steinmetz, H., Schleicher, A., & Dabringhaus, A. (1997). Motor cortex and hand motor skills: Structural compliance in the human brain. Human Brain Mapping, 5(3), 206–215.

    Google Scholar 

  • Arbib, M. A. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences, 28(02), 105–124.

    Google Scholar 

  • Auerbach, S. (1906). Zur Lokalisation des musikalischen Talentes im Gehirn und am Schädel. Archives Anatomy and physiology 1906:197–230, 1908:31–38, 1911:1–10, 1913: (Suppl): 89–96.

    Google Scholar 

  • Avanzini, G. (2003). Musicogenic seizures. Annals of the New York Academy of Sciences, 999(1), 95–102.

    Google Scholar 

  • Ayotte, J., Peretz, I., Rousseau, I., Bard, C., & Bojanowski, M. (2000). Patterns of music agnosia associated with middle cerebral artery infarcts. Brain, 123(9), 1926–1938.

    Google Scholar 

  • Bangert, M., & Altenmüller, E. O. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG study. BMC Neuroscience, 4(1), 26.

    Google Scholar 

  • Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., et al. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. Neuroimage, 30(3), 917–926.

    Google Scholar 

  • Barker, D., Plack, C. J., & Hall, D. A. (2012). Reexamining the evidence for a pitch-sensitive region: A human fMRI study using iterated ripple noise. Cerebral Cortex, 22(4), 745–753.

    Google Scholar 

  • Barron, F., & Harrington, D. M. (1981). Creativity, intelligence, and personality. Annual Review of Psychology, 32(1), 439–476.

    Google Scholar 

  • Bendor, D., & Wang, X. (2005). The neuronal representation of pitch in primate auditory cortex. Nature, 436(7054), 1161–1165.

    Google Scholar 

  • Bendor, D., & Wang, X. (2006). Cortical representations of pitch in monkeys and humans. Current Opinion in Neurobiology, 16(4), 391–399.

    Google Scholar 

  • Bengtsson, S. L., Csíkszentmihályi, M., & Ullén, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of Cognitive Neuroscience, 19(5), 830–842.

    Google Scholar 

  • Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 1148–1150.

    Google Scholar 

  • Bentivoglio, M. (2003). Musical skills and neural functions. Annals of the New York Academy of Sciences, 999(1), 234–243.

    Google Scholar 

  • Berkowitz, A. L., & Ansari, D. (2008). Generation of novel motor sequences: The neural correlates of musical improvisation. Neuroimage, 41(2), 535–543.

    Google Scholar 

  • Berman, I. W. (1981). Musical functioning, speech lateralization and the amusias. South African Medical Journal, 59(3), 78–81.

    Google Scholar 

  • Beversdorf, D. Q., Hughes, J. D., Steinberg, B. A., Lewis, L. D., & Heilman, K. M. (1999). Noradrenergic modulation of cognitive flexibility in problem solving. Neuroreport, 10(13), 2763–2767.

    Google Scholar 

  • Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98(20), 11818–11823.

    Google Scholar 

  • Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2(4), 382–387.

    Google Scholar 

  • Bradt, J., Dileo, C., Grocke, D., & Magill, L. (2011). Music interventions for improving psychological and physical outcomes in cancer patients. Cochrane Database Systematic Reviews, 10(8), CD006911.

    Google Scholar 

  • Braun, C. M., Dumont, M., Duval, J., & Hamel-Hébert, I. (2004). Speech rate as a sticky switch: A multiple lesion case analysis of mutism and hyperlalia. Brain and Language, 89(1), 243–252.

    Google Scholar 

  • Braun, C. M., Larocque, C., Daigneault, S., & Montour-Proulx, I. (1999). Mania, pseudomania, depression, and pseudodepression resulting from focal unilateral cortical lesions. Cognitive and Behavioral Neurology, 12(1), 35–51.

    Google Scholar 

  • Brown, S., Martinez, M. J., & Parsons, L. M. (2004). Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport, 15(13), 2033–2037.

    Google Scholar 

  • Cannistraro, P. A., & Rauch, S. L. (2003). Neural circuitry of anxiety: Evidence from structural and functional neuroimaging studies. Psychopharmacology Bulletin, 37(4), 8–25.

    Google Scholar 

  • Carlsson, I., Wendt, P. E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia, 38(6), 873–885.

    Google Scholar 

  • Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85(3), 499.

    Google Scholar 

  • Chan, M. F., Wong, Z. Y., & Thayala, N. V. (2011). The effectiveness of music listening in reducing depressive symptoms in adults: A systematic review. Complementary Therapies in Medicine, 19(6), 332–348.

    Google Scholar 

  • Clark, I. N., Taylor, N. F., & Baker, F. A. (2012). Music interventions and physical activity in older adults: A systematic literature review and meta-analysis. Journal of Rehabilitation Medicine, 44(9), 710–719.

    Google Scholar 

  • Cross, I. (2001). Music, cognition, culture, and evolution. Annals of the New York Academy of Sciences, 930(1), 28–42.

    MathSciNet  Google Scholar 

  • Darwin, C. (1871). The descent of man and selection in relation to sex. London: John Murray Publishers.

    Google Scholar 

  • Davis, W.D., & Gfeller, K.E. (2008). Music therapy: Historical perspective. In W.B. Davis, K.E. Gfeller, M.H. Thaut (Eds.), An introduction to music therapy. theory and practice. (3rd ed. pp. 17–39) The American Music Therapy Association, Inc., Silver Spring.

    Google Scholar 

  • Dawson, W. J. (2011). How and why musicians are different from nonmusicians: A bibliographic review. Medical Problems of Performing Artists, 26(2), 65–78.

    Google Scholar 

  • de Souza, L. C., Volle, E., Bertoux, M., Czernecki, V., Funkiewiez, A., & Allali, G. (2010). Poor creativity in frontotemporal dementia: A window into the neural bases of the creative mind. Neuropsychologia, 48(13), 3733–3742.

    Google Scholar 

  • Eschrich, S., Münte, T. F., & Altenmüller, E. O. (2008). Unforgettable film music: The role of emotion in episodic long-term memory for music. BMC Neuroscience, 9(1), 48.

    Google Scholar 

  • Fedorenko, E., McDermott, J. H., Norman-Haignere, S., & Kanwisher, N. (2012). Sensitivity to musical structure in the human brain. Journal of Neurophysiology, 108(12), 3289–3300.

    Google Scholar 

  • Fitch, W. T. (2005). The evolution of language: A comparative review. Biology and Philosophy, 20(2–3), 193–203.

    Google Scholar 

  • Fitch, W. (2006). The biology and evolution of music: A comparative perspective. Cognition, 100(1), 173–215.

    Google Scholar 

  • Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. Journal of Comparative Neurology, 493(1), 147–153.

    Google Scholar 

  • Flaherty, A. W., Williams, Z. M., Amirnovin, R., Kasper, E., Rauch, S. L., Cosgrove, G. R., et al. (2005). Deep brain stimulation of the anterior internal capsule for the treatment of Tourette syndrome: Technical case report. Neurosurgery, 57(4), E403.

    Google Scholar 

  • Forgeard, M., Winner, E., Norton, A., & Schlaug, G. (2008). Practicing a musical instrument in childhood is associated with enhanced verbal ability and nonverbal reasoning. PLoS ONE, 3(10), e3566.

    Google Scholar 

  • Freeman, W. J. (1995). Societies of Brains: A Study in the Neuroscience of Love and Hate. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Fukui, H., & Yamashita, M. (2003). The effects of music and visual stress on testosterone and cortisol in men and women. Neuro Endocrinology Letters, 24(3–4), 173–180.

    Google Scholar 

  • Gabriëls, L., Cosyns, P., Nuttin, B., Demeulemeester, H., & Gybels, J. (2003). Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: Psychopathological and neuropsychological outcome in three cases. Acta Psychiatrica Scandinavica, 107(4), 275–282.

    Google Scholar 

  • Garcia-Casares, N., Berthier Torres, M. L., Froudist Walsh, S., & Gonzalez-Santos, P. (2013). Model of music cognition and amusia. Neurologia, 28(3), 179–186.

    Google Scholar 

  • Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23(27), 9240–9245.

    Google Scholar 

  • Gfeller K. E., Thaut M. H. (2008). Music therapy in the treatment of behavioral-emotional disorders. In W. B. Davis, K. E. Gfeller, M. H. Thaut (Eds.), An introduction to music therapy. Theory and practice (3rd ed. Vol. 8, pp. 209–246) The American Music Therapy Association, Inc., Silver Spring.

    Google Scholar 

  • Giovagnoli, A. R., & Raglio, A. (2011). Cognitive abilities in musicians. Perceptual and Motor Skills, 113(2), 563–569.

    Google Scholar 

  • Goldapple, K., Segal, Z., Garson, C., Lau, M., Bieling, P., Kennedy, S., & Mayberg, H. (2004). Modulation of cortical-limbic pathways in major depression: Treatment-specific effects of cognitive behavior therapy. Archives of General Psychiatry, 61(1), 34–41.

    Google Scholar 

  • Griffiths, T. D. (2001). The neural processing of complex sounds. Annals of the New York Academy of Sciences, 930(1), 133–142.

    Google Scholar 

  • Griffiths, T. D. (2003). Functional imaging of pitch analysis. Annals of the New York Academy of Sciences, 999(1), 40–49.

    Google Scholar 

  • Griffiths, T. D., Büchel, C., Frackowiak, R. S., & Patterson, R. D. (1998). Analysis of temporal structure in sound by the human brain. Nature Neuroscience, 1(5), 422–427.

    Google Scholar 

  • Gutschalk, A., Patterson, R. D., Rupp, A., Uppenkamp, S., & Scherg, M. (2002). Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage, 15(1), 207–216.

    Google Scholar 

  • Halpern, A. R., & Zatorre, R. J. (1999). When that tune runs through your head: A PET investigation of auditory imagery for familiar melodies. Cerebral Cortex, 9(7), 697–704.

    Google Scholar 

  • Halpern, A. R., Zatorre, R. J., Bouffard, M., & Johnson, J. A. (2004). Behavioral and neural correlates of perceived and imagined musical timbre. Neuropsychologia, 42(9), 1281–1292.

    Google Scholar 

  • Halwani, G. F., Loui, P., Rüber, T., & Schlaug, G. (2011). Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians. Frontiers in Psychology, 2, 156. doi:10.3389/fpsyg.2011.00156.

  • Hampson, M., & Hoffman, R. E. (2010). Transcranial magnetic stimulation and connectivity mapping: Tools for studying the neural bases of brain disorders. Frontiers in Systems Neuroscience4. doi:10.3389/fnsys.2010.00040.

  • Han, Y., Yang, H., Lv, Y. T., Zhu, C. Z., He, Y., & Tang, H. H. (2009). Gray matter density and white matter integrity in pianists’ brain: A combined structural and diffusion tensor MRI study. Neuroscience Letters, 459(1), 3–6.

    Google Scholar 

  • Heilman, K. M. (2005). Creativity and the brain. New York: Psychology Press, Taylor & Francis Group.

    Google Scholar 

  • Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 9(5), 369–379.

    Google Scholar 

  • Hennessey, B. A., & Amabile, T. M. (2010). Creativity. Annual Review of Psychology, 61, 569–598.

    Google Scholar 

  • Herdener, M., Humbel, T., Esposito, F., Habermeyer, B., Cattapan-Ludewig, K., & Seifritz, E. (2014). Jazz drummers recruit language-specific areas for the processing of rhythmic structure. Cerebral Cortex, 24(3), 836–843.

    Google Scholar 

  • Herholz, S. C., Halpern, A. R., & Zatorre, R. J. (2012). Neuronal correlates of perception, imagery, and memory for familiar tunes. Journal of Cognitive Neuroscience, 24(6), 1382–1397.

    Google Scholar 

  • Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76(3), 486–502.

    Google Scholar 

  • Hetland, L. (2000). Listening to music enhances spatial-temporal reasoning: Evidence for the “Mozart Effect”. Journal of Aesthetic Education, 34, 105–148.

    Google Scholar 

  • Hoppe, K. D. (1988). Hemispheric specialization and creativity. Psychiatric Clinics of North America, 11, 03–315.

    Google Scholar 

  • Huron, D. (2001). Is music an evolutionary adaptation? Annals of the New York Academy of Sciences, 930(1), 43–61.

    Google Scholar 

  • Hutchinson, S., Lee, L. H. L., Gaab, N., & Schlaug, G. (2003). Cerebellar volume of musicians. Cerebral Cortex, 13(9), 943–949.

    Google Scholar 

  • Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009). Musical training shapes structural brain development. The Journal of Neuroscience, 29(10), 3019–3025.

    Google Scholar 

  • Hyde, K. L., Peretz, I., & Zatorre, R. J. (2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 46(2), 632–639.

    Google Scholar 

  • Imfeld, A., Oechslin, M. S., Meyer, M., Loenneker, T., & Jancke, L. (2009). White matter plasticity in the corticospinal tract of musicians: A diffusion tensor imaging study. Neuroimage, 46(3), 600–607.

    Google Scholar 

  • Jakobson, R., & Halle, M. (2002). Fundamentals of language (Vol. 1). Paris, Mouton: Walter de Gruyter.

    Google Scholar 

  • Janata, P. (2005). Brain networks that track musical structure. Annals of the New York Academy of Sciences, 1060(1), 111–124.

    Google Scholar 

  • Janata, P., Birk, J. L., Van Horn, J. D., Leman, M., Tillmann, B., & Bharucha, J. J. (2002). The cortical topography of tonal structures underlying Western music. Science, 298(5601), 2167–2170.

    Google Scholar 

  • Judd, T. (1988). The varieties of musical talent. In L. K. Obler & D. Fein (Eds.), The exceptional brain: Neuropsychology of talent and special abilities (pp. 127–155). New York: Guilford Press.

    Google Scholar 

  • Keltikangas-Järvinen, L., Elovainio, M., Kivimäki, M., Lichtermann, D., Ekelund, J., & Peltonen, L. (2003). Association between the type 4 dopamine receptor gene polymorphism and novelty seeking. Psychosomatic Medicine, 65(3), 471–476.

    Google Scholar 

  • Koelsch, S. (2009). A neuroscientific perspective on music therapy. Annals of the New York Academy of Sciences, 1169(1), 374–384.

    Google Scholar 

  • Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive Sciences, 14(3), 131–137.

    Google Scholar 

  • Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9(12), 578–584.

    Google Scholar 

  • Kunej, D., & Turk, I. (2000). New perspectives on the beginnings of music: Archaeological and musicological analysis of a Middle Paleolithic bone ‘flute’. In N. L. Wallin, B. Merker, S. Brown S (Eds.), The origins of music (pp. 235–268). Cambridge: The MIT Press.

    Google Scholar 

  • Kung, S. J., Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2013). Interacting cortical and basal ganglia networks underlying finding and tapping to the musical beat. Journal of Cognitive Neuroscience, 25(3), 401–420.

    Google Scholar 

  • Kyle, N. L. (1988). Emotions and hemispheric specialization. Psychiatric Clinics of North America, 11, 367–381.

    Google Scholar 

  • Lee, D. J., Chen, Y., & Schlaug, G. (2003). Corpus callosum: Musician and gender effects. Neuroreport, 14(2), 205–209.

    Google Scholar 

  • Lee, Y. S., Janata, P., Frost, C., Hanke, M., & Granger, R. (2011). Investigation of melodic contour processing in the brain using multivariate pattern-based fMRI. Neuroimage, 57(1), 293–300.

    Google Scholar 

  • Liégeois-Chauvel, C., Peretz, I., Babaï, M., Laguitton, V., & Chauvel, P. (1998). Contribution of different cortical areas in the temporal lobes to music processing. Brain, 121(10), 1853–1867.

    Google Scholar 

  • Limb, C. J. (2006). Structural and functional neural correlates of music perception. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 288(4), 435–446.

    Google Scholar 

  • Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An FMRI study of jazz improvisation. PLoS ONE, 3(2), e1679.

    Google Scholar 

  • Limb, C. J., Kemeny, S., Ortigoza, E. B., Rouhani, S., & Braun, A. R. (2006). Left hemispheric lateralization of brain activity during passive rhythm perception in musicians. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 288(4), 382–389.

    Google Scholar 

  • Liotti, M., & Mayberg, H. S. (2001). The role of functional neuroimaging in the neuropsychology of depression. Journal of Clinical and Experimental Neuropsychology, 23(1), 121–136.

    Google Scholar 

  • Liu, C. H., Li, F., Li, S. F., Wang, Y. J., Tie, C. L., Wu, H. Y., et al. (2012). Abnormal baseline brain activity in bipolar depression: A resting state functional magnetic resonance imaging study. Psychiatry Research Neuroimaging, 203(2), 175–179.

    Google Scholar 

  • López-González, M., & Limb, C. J. (2012). Musical creativity and the brain. In Cerebrum:the dana forum on brain science. Dana Foundation.

    Google Scholar 

  • Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001). Musical syntax is processed in Broca’s area: An MEG study. Nature Neuroscience, 4(5), 540–545.

    Google Scholar 

  • Maguire, M. J. (2012). Music and epilepsy: A critical review. Epilepsia, 53(6), 947–961.

    Google Scholar 

  • Martindale, C. (1999). Biological bases of creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 137–152). New York: Cambridge University Press.

    Google Scholar 

  • Masataka, N. (2009). The origins of language and the evolution of music: A comparative perspective. Physics of Life Reviews, 6(1), 11–22.

    Google Scholar 

  • Matsui, T., Tanaka, S., Kazai, K., Tsuzaki, M., & Katayose, H. (2013). Activation of the left superior temporal gyrus of musicians by music-derived sounds. Neuroreport, 24(1), 41–45.

    Google Scholar 

  • Menon, V., & Levitin, D. J. (2005). The rewards of music listening: Response and physiological connectivity of the mesolimbic system. Neuroimage, 28(1), 175–184.

    Google Scholar 

  • Menon, V., Levitin, D. J., Smith, B. K., Lembke, A., Krasnow, B. D., & Glazer, D. (2002). Neural correlates of timbre change in harmonic sounds. Neuroimage, 17(4), 1742–1754.

    Google Scholar 

  • Metherate, R., Kaur, S., Kawai, H., Lazar, R., Liang, K., & Rose, H. J. (2005). Spectral integration in auditory cortex: Mechanisms and modulation. Hearing Research, 206(1), 146–158.

    Google Scholar 

  • Meyer A (1977). The search for the morphological substrate in the brains of eminent musicians: A historical review. C. MacDonald & R.A. Henson (Eds.), Music and the brain (pp. 255–281). London: Heinemann Medical Books.

    Google Scholar 

  • Mihov, K. M., Denzler, M., & Förster, J. (2010). Hemispheric specialization and creative thinking: A meta-analytic review of lateralization of creativity. Brain and Cognition, 72(3), 442–448.

    Google Scholar 

  • Miller, B. L., Cummings, J., Mishkin, F., Boone, K., Prince, F., Ponton, M., et al. (1998). Emergence of artistic talent in frontotemporal dementia. Neurology, 51(4), 978–982.

    Google Scholar 

  • Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50(4), 381–425.

    Google Scholar 

  • Morrison, J. H., & Foote, S. L. (1986). Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys. Journal of Comparative Neurology, 243(1), 117–138.

    Google Scholar 

  • Murray, J. (2010). Musicogenic epilepsy. In F.C. Rose FC (Ed.). Neurology of music (Vol. 11, pp. 173–186). Imperial College Press, London.

    Google Scholar 

  • Nelken, I. (2008). Processing of complex sounds in the auditory system. Current Opinion in Neurobiology, 18(4), 413–417.

    Google Scholar 

  • Ohnishi, T., Matsuda, H., Asada, T., Aruga, M., Hirakata, M., Nishikawa, M., et al. (2001). Functional anatomy of musical perception in musicians. Cerebral Cortex, 11(8), 754–760.

    Google Scholar 

  • Omar, R., Henley, S., Bartlett, J. W., Hailstone, J. C., Gordon, E., Sauter, D. A., et al. (2011). The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration. Neuroimage, 56(3), 1814–1821.

    Google Scholar 

  • O’Sullivan, S. S., Evans, A. H., & Lees, A. J. (2009). Dopamine dysregulation syndrome: An overview of its epidemiology, mechanisms and management. CNS Drugs, 23(2), 157–170.

    Google Scholar 

  • Ozturk, A. H., Tascioglu, B., Aktekin, M., Kurtoglu, Z., & Erden, I. (2002). Morphometric comparison of the human corpus callosum in professional musicians and non-musicians by using in vivo magnetic resonance imaging. Journal of Neuroradiology, 29(1), 29–34.

    Google Scholar 

  • Parent, A. (1996). Carpenter’s Human Neuroanatomy (9th ed.). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Parsons, L. M. (2001). Exploring the functional neuroanatomy of music performance, perception, and comprehension. Annals of the New York Academy of Sciences, 930(1), 211–231.

    MathSciNet  Google Scholar 

  • Parsons, L. M., Sergent, J., Hodges, D. A., & Fox, P. T. (2005). The brain basis of piano performance. Neuropsychologia, 43(2), 199–215.

    Google Scholar 

  • Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36(4), 767–776.

    Google Scholar 

  • Penagos, H., Melcher, J. R., & Oxenham, A. J. (2004). A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. The Journal of Neuroscience, 24(30), 6810–6815.

    Google Scholar 

  • Penhune, V., Zatorre, R., & Evans, A. (1998). Cerebellar contributions to motor timing: A PET study of auditory and visual rhythm reproduction. Journal of Cognitive Neuroscience, 10(6), 752–765.

    Google Scholar 

  • Peretz, I. (1990). Processing of local and global musical information by unilateral brain-damaged patients. Brain, 113(4), 1185–1205.

    Google Scholar 

  • Peretz, I. (2003). Brain specialization for music: New evidence from congenital amusia. In I. Peretz & R. Zatorre (Eds.), The cognitive neuroscience of music (Vol. 13, 192–203). London: Oxford Publishing Company.

    Google Scholar 

  • Peretz, I. (2006). The nature of music from a biological perspective. Cognition, 100(1), 1–32.

    Google Scholar 

  • Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688–691.

    Google Scholar 

  • Peretz, I., Gosselin, N., Belin, P., Zatorre, R. J., Plailly, J., & Tillmann, B. (2009). Music lexical networks. Annals of the New York Academy of Sciences, 1169(1), 256–265.

    Google Scholar 

  • Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89–114.

    Google Scholar 

  • Perkins, D. N. (1988). Creativity and the quest for mechanism. In R. J. Sternberg & E. E. Smith (Eds.), Psychology of human thought (pp. 309–336). New York: Cambridge University Press.

    Google Scholar 

  • Perlovsky, L. (2010). Musical emotions: Functions, origins, evolution. Physics of Life Reviews, 7(1), 2–27.

    Google Scholar 

  • Pinker, S., & Jackendoff, R. (2005). The faculty of language: What’s special about it? Cognition, 95(2), 201–236.

    Google Scholar 

  • Pittau, F., Tinuper, P., Bisulli, F., Naldi, I., Cortelli, P., Bisulli, A., et al. (2008). Videopolygraphic and functional MRI study of musicogenic epilepsy. A case report and literature review. Epilepsy and Behavior, 13(4), 685–692.

    Google Scholar 

  • Platel, H., Price, C., Baron, J. C., Wise, R., Lambert, J., Frackowiak, R. S., et al. (1997). The structural components of music perception. A functional anatomical study. Brain, 120(2), 229–243.

    Google Scholar 

  • Puschmann, S., Uppenkamp, S., Kollmeier, B., & Thiel, C. M. (2010). Dichotic pitch activates pitch processing centre in Heschl’s gyrus. Neuroimage, 49(2), 1641–1649.

    Google Scholar 

  • Rauschecker, J. P. (2005). Neural encoding and retrieval of sound sequences. Annals of the New York Academy of Sciences, 1060(1), 125–135.

    Google Scholar 

  • Rauscher, F. H., & Shaw, G. L. (1998). Key components of the Mozart effect. Perceptual and Motor Skills, 86(3), 835–841.

    Google Scholar 

  • Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1993). Music and spatial task performance. Nature, 365(6447), 611.

    Google Scholar 

  • Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1995). Listening to Mozart enhances spatial-temporal reasoning: Towards a neurophysiological basis. Neuroscience Letters, 185(1), 44–47.

    Google Scholar 

  • Richardson, M. M., Babiak-Vazquez, A. E., & Frenkel, M. A. (2008). Music therapy in a comprehensive cancer center. Journal of the Society for Integrative Oncology, 6(2), 76–81.

    Google Scholar 

  • Rickard, N. S., Toukhsati, S. R., & Field, S. E. (2005). The effect of music on cognitive performance: Insight from neurobiological and animal studies. Behavioral and Cognitive Neuroscience Reviews, 4(4), 235–261.

    Google Scholar 

  • Roederer, J. G. (1984). The search for a survival value of music. Music perception, pp. 350–356.

    Google Scholar 

  • Rosenzweig, M. R., & Bennett, E. L. (1996). Psychobiology of plasticity: Effects of training and experience on brain and behavior. Behavioural Brain Research, 78(1), 57–65.

    Google Scholar 

  • Ross, D. A., Gore, J. C., & Marks, L. E. (2005). Absolute pitch: Music and beyond. Epilepsy and Behavior, 7(4), 578–601.

    Google Scholar 

  • Ryland, M. G. (2009). The amazing ear: What happens before the brainstem auditory evoked response. American Journal of Electroneurodiagnostic Technology, 49, 1–13.

    Google Scholar 

  • Sakai, K., Hikosaka, O., Miyauchi, S., Takino, R., Tamada, T., Iwata, N. K., et al. (1999). Neural representation of a rhythm depends on its interval ratio. The Journal of Neuroscience, 19(22), 10074–10081.

    Google Scholar 

  • Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257–262.

    Google Scholar 

  • Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R., & Zatorre, R. J. (2009). The rewarding aspects of music listening are related to degree of emotional arousal. PLoS ONE, 4(10), e7487.

    Google Scholar 

  • Samson, S. (2003). Neuropsychological studies of musical timbre. Annals of the New York Academy of Sciences, 999(1), 144–151.

    Google Scholar 

  • Särkämö, T., & Soto, D. (2012). Music listening after stroke: Beneficial effects and potential neural mechanisms. Annals of the New York Academy of Sciences, 1252(1), 266–281.

    Google Scholar 

  • Schellenberg, E. G. (2003). Does exposure to music have beneficial side effects? In I. Peretz & R. Zatorre (Eds.), The cognitive neuroscience of music (pp. 430–448). London: Oxford Publishing Company.

    Google Scholar 

  • Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychological Science, 15(8), 511–514.

    Google Scholar 

  • Schlaug, G. (2003). The brain of musicians. In I. Peretz & R. Zatorre (Eds.), The cognitive neuroscience of music (Vol 24, pp. 366–381). London: Oxford Publishing Company.

    Google Scholar 

  • Schlaug, G., Jäncke, L., Huang, Y., Staiger, J. F., & Steinmetz, H. (1995). Increased corpus callosum size in musicians. Neuropsychologia, 33(8), 1047–1055.

    Google Scholar 

  • Schlaug, G., Norton, A., Overy, K., & Winner, E. (2005). Effects of music training on the child’s brain and cognitive development. Annals of the New York Academy of Sciences, 1060(1), 219–230.

    Google Scholar 

  • Schlund, M. W., Verduzco, G., Cataldo, M. F., & Hoehn-Saric, R. (2012). Generalized anxiety modulates frontal and limbic activation in major depression. Behavioral and Brain Functions, 8(1), 8. doi:10.1186/1744-9081-8-8.

    Google Scholar 

  • Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5(7), 688–694.

    Google Scholar 

  • Schulze, K., Zysset, S., Mueller, K., Friederici, A. D., & Koelsch, S. (2011). Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians. Human Brain Mapping, 32(5), 771–783.

    Google Scholar 

  • Schwenkreis, P., El Tom, S., Ragert, P., Pleger, B., Tegenthoff, M., & Dinse, H. R. (2007). Assessment of sensorimotor cortical representation asymmetries and motor skills in violin players. European Journal of Neuroscience, 26(11), 3291–3302.

    Google Scholar 

  • Sessions, R. (1950). The musical experience of composer, performer, listener. Princeton: Princeton University Press.

    Google Scholar 

  • Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49(2), 178–185.

    Google Scholar 

  • Shergill, S. S., Cameron, L. A., Brammer, M. J., Williams, S. C. R., Murray, R. M., & McGuire, P. K. (2001). Modality specific neural correlates of auditory and somatic hallucinations. Journal of Neurology, Neurosurgery and Psychiatry, 71(5), 688–690.

    Google Scholar 

  • Sloboda, J. (1993). Musical ability. In Proceedings of the Symposium on the Origins and Development of High Ability (Vol. 178, pp. 106–113), held at the Ciba Foundation, London, January 25, 1993. Available at http://epub.ub.uni-muenchen.de/2526/1/2526.pdf, Accessed June 30, 2014.

  • Snyder, A., Bossomaier, T., & Mitchell, D. J. (2004). Concept formation: ‘object’ attributes dynamically inhibited from conscious awareness. Journal of Integrative Neuroscience, 3(1), 31–46.

    Google Scholar 

  • Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early musical training and white-matter plasticity in the corpus callosum: Evidence for a sensitive period. The Journal of Neuroscience, 33(3), 1282–1290.

    Google Scholar 

  • Sternberg, R. J., & O’Hara, L. A. (1999). Creativity and intelligence. In R. J. Sternberg (Ed.), Handbook of Creativity (pp. 251–272). New York: Cambridge University Press.

    Google Scholar 

  • Stewart, L. (2008). Fractionating the musical mind: Insights from congenital amusia. Current Opinion in Neurobiology, 18(2), 127–130.

    Google Scholar 

  • Stewart, L., Overath, T., Warren, J. D., Foxton, J. M., & Griffiths, T. D. (2008). fMRI evidence for a cortical hierarchy of pitch pattern processing. PLoS ONE, 3(1), e1470.

    Google Scholar 

  • Stewart, L., von Kriegstein, K., Warren, J. D., & Griffiths, T. D. (2006). Music and the brain: Disorders of musical listening. Brain, 129(10), 2533–2553.

    Google Scholar 

  • Surmani, A., Surmani, K. F., & Manus, M. (2004). Alfred’s essentials of music theory: A complete self-study course for all musicians. Van Nuys: Alfred Publishing Co.

    Google Scholar 

  • Swerdlow, N. R., Stephany, N., Wasserman, L. C., Talledo, J., Sharp, R., & Auerbach, P. P. (2003). Dopamine agonists disrupt visual latent inhibition in normal males using a within-subject paradigm. Psychopharmacology (Berl), 169(3), 314.

    Google Scholar 

  • Tattersall, I., & Schwartz, J. H. (2009). Evolution of the genus homo. Annual Review of Earth and Planetary Sciences, 37, 67–92.

    Google Scholar 

  • Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. The Journal of Neuroscience, 31(10), 3805–3812.

    Google Scholar 

  • Thaut, M. H., Thaut, C., & LaGasse, B. (2008). Music therapy in neurologic rehabilitation. In W. B. Davis, K. E. Gfeller & M. H. Thaut (Eds.), An introduction to music therapy. Theory and practice (3rd ed. Vol. 26, 1–304). The American Music Therapy Association, Inc., Silver Spring.

    Google Scholar 

  • Torrance, E. P. (1975). Creativity research in education: Still alive. In I. A. Taylor (Ed.), Perspectives in Creativity (pp. 278–296). Zurich: Aldine de Gruyter.

    Google Scholar 

  • Tramo, M. J., Cariani, P. A., Koh, C. K., Makris, N., & Braida, L. D. (2005). Neurophysiology and neuroanatomy of pitch perception: Auditory cortex. Annals of the New York Academy of Sciences, 1060(1), 148–174.

    Google Scholar 

  • Walker, S. F. (1980). Lateralization of functions in the vertebrate brain: A review. British Journal of Psychology, 71(3), 329–367.

    Google Scholar 

  • Wang, Y., Jia, Y., Xu, G., Ling, X., Liu, S., & Huang, L. (2012). Frontal white matter biochemical abnormalities in first-episode, treatment-naive patients with major depressive disorder: A proton magnetic resonance spectroscopy study. Journal of Affective Disorders, 136(3), 620–626.

    Google Scholar 

  • Warren, J. D., Jennings, A. R., & Griffiths, T. D. (2005). Analysis of the spectral envelope of sounds by the human brain. Neuroimage, 24(4), 1052–1057.

    Google Scholar 

  • Wiesendanger, M. (2010). Temporal co-ordination of the two hands in playing the violin. In F. C. Rose (Ed.), Neurology of music (pp. 115–125). London: Imperial College Press.

    Google Scholar 

  • Xu, D., Liu, T., Ashe, J., & Bushara, K. O. (2006). Role of the olivo-cerebellar system in timing. The Journal of Neuroscience, 26(22), 5990–5995.

    Google Scholar 

  • Yamadori, A., Mori, E., Tabuchi, M., Kudo, Y., & Mitani, Y. (1986). Hypergraphia: A right hemisphere syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 49(10), 1160–1164.

    Google Scholar 

  • Zatorre, R. J. (2003). Absolute pitch: A model for understanding the influence of genes and development on neural and cognitive function. Nature Neuroscience, 6(7), 692–695.

    Google Scholar 

  • Zatorre, R. J., Evans, A. C., & Meyer, E. (1994). Neural mechanisms underlying melodic perception and memory for pitch. The Journal of Neuroscience, 14(4), 1908–1919.

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Sheheryar Jamali for research assistance. Dr. Newton was supported in part by National Cancer Institute grant, CA 16058, and the Esther Dardinger Neuro-Oncology Center Endowment Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert B. Newton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Newton, H.B. (2015). The Neurology of Creativity: Focus on Music. In: Charyton, C. (eds) Creativity and Innovation Among Science and Art. Springer, London. https://doi.org/10.1007/978-1-4471-6624-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6624-5_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6623-8

  • Online ISBN: 978-1-4471-6624-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics