Skip to main content

Interlocking

  • Chapter
  • First Online:
Intramedullary Nailing

Abstract

Interlocking of intramedullary nails can be cumbersome, time consuming, related to radiation exposure and complications. Several aiming devices have been described in the literature, but the fluoroscopy supported free-hand technique for drilling and screw insertion remains the most popular method. Fluoroscopy may result in considerable exposure for everyone inside the operating theatre. Other locking techniques include nail mounted tools, guides attached to an image intensifier, techniques based on C-arm image analysis, computer navigation, and self-locking nails.

It could be shown biomechanically, that metaphyseal screws failed at higher loads than diaphyseal screws. In small diameter nails, screw deformation can be limited or avoided by using the maximum number of locking options. Experimental and clinical studies could show no evidence for routine dynamization.

Typical complications associated with nail interlocking are screw breakage, screw loosening, nail damage, failure of targeting and pseudodynamization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. US Food and Drug Administration (FDA), Center for Devices and Radiological Health. White paper initiative to reduce unnecessary radiation exposure from medial imaging (page last updated: 12/14/2010). http://www.fda.gov/Radiation-EmittingProducts/RadiationSafety/RadiationDoseReduction/ucm199994htm. 2010.

  2. Kempf I, Grosse A, Beck G. Closed locked intramedullary nailing. Its application to comminuted fractures of the femur. J Bone Joint Surg Am. 1985;67(5):709–20. PubMed PMID: 3997923. Epub 1985/06/01. eng.

    CAS  PubMed  Google Scholar 

  3. Tornetta P, Tiburzi D. The treatment of femoral shaft fractures using intramedullary interlocked nails with and without intramedullary reaming: a preliminary report. J Orthop Trauma. 1997;11(2):89–92. PubMed PMID: 9057141.

    PubMed  Google Scholar 

  4. Sanders R, Koval KJ, DiPasquale T, Schmelling G, Stenzler S, Ross E. Exposure of the orthopaedic surgeon to radiation. J Bone Joint Surg Am. 1993;75(3):326–30. PubMed PMID: 8444910.

    CAS  PubMed  Google Scholar 

  5. Levin PE, Schoen Jr RW, Browner BD. Radiation exposure to the surgeon during closed interlocking intramedullary nailing. J Bone Joint Surg Am. 1987;69(5):761–6. PubMed PMID: 3597477.

    CAS  PubMed  Google Scholar 

  6. Whatling GM, Nokes LD. Literature review of current techniques for the insertion of distal screws into intramedullary locking nails. Injury. 2006;37(2):109–19. PubMed PMID: 16310192.

    CAS  PubMed  Google Scholar 

  7. Mizuno T, Kyoizumi S, Suzuki T, Iwamoto KS, Seyama T. Continued expression of a tissue specific activated oncogene in the early steps of radiation-induced human thyroid carcinogenesis. Oncogene. 1997;15(12):1455–60. PubMed PMID: 9333021.

    CAS  PubMed  Google Scholar 

  8. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A. 2003;100(9):5057–62. PubMed PMID: 12679524. Pubmed Central PMCID: 154297.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. ICRP. Recommendations of the International Commission on Radiological Protection. Ann ICRP. 1990;21:1–3.

    Google Scholar 

  10. Roux A, Bronsard N, Blanchet N, de Peretti F. Can fluoroscopy radiation exposure be measured in minimally invasive trauma surgery? Orthop Traumatol Surg Res. 2011;97(6):662–7. PubMed PMID: 21943776.

    CAS  PubMed  Google Scholar 

  11. Trout ED, Kelley JP. Scattered radiation from a tissue-equivalent phantom for x rays from 50 to 300 kVp. Radiology. 1972;104(1):161–9. PubMed PMID: 5033580.

    CAS  PubMed  Google Scholar 

  12. Madan S, Blakeway C. Radiation exposure to surgeon and patient in intramedullary nailing of the lower limb. Injury. 2002;33(8):723–7. PubMed PMID: 12213425.

    PubMed  Google Scholar 

  13. Muzaffar TS, Imran Y, Iskandar MA, Zakaria A. Radiation exposure to the surgeon during femoral interlocking nailing under fluoroscopic imaging. Med J Malaysia. 2005;60(Suppl C):26–9. PubMed PMID: 16381279.

    PubMed  Google Scholar 

  14. Miller ME, Davis ML, MacClean CR, Davis JG, Smith BL, Humphries JR. Radiation exposure and associated risks to operating-room personnel during use of fluoroscopic guidance for selected orthopaedic surgical procedures. J Bone Joint Surg Am. 1983;65(1):1–4. PubMed PMID: 6848524.

    CAS  PubMed  Google Scholar 

  15. Sugarman ID, Adam I, Bunker TD. Radiation dosage during AO locking femoral nailing. Injury. 1988;19(5):336–8. PubMed PMID: 3255713.

    CAS  PubMed  Google Scholar 

  16. Blattert TR, Fill UA, Kunz E, Panzer W, Weckbach A, Regulla DF. Skill dependence of radiation exposure for the orthopaedic surgeon during interlocking nailing of long-bone shaft fractures: a clinical study. Arch Orthop Trauma Surg. 2004;124(10):659–64. PubMed PMID: 15365718.

    PubMed  Google Scholar 

  17. Harstall R, Heini PF, Mini RL, Orler R. Radiation exposure to the surgeon during fluoroscopically assisted percutaneous vertebroplasty: a prospective study. Spine. 2005;30(16):1893–8. PubMed PMID: 16103862.

    PubMed  Google Scholar 

  18. Burns CG, Litsky AS, Allen MJ, Johnson KA. Influence of locking bolt location on the mechanical properties of an interlocking nail in the canine femur. Vet Surg. 2011;40(5):522–30. PubMed PMID: 21615431.

    PubMed  Google Scholar 

  19. George CJ, Lindsey RW, Noble PC, Alexander JW, Kamaric E. Optimal location of a single distal interlocking screw in intramedullary nailing of distal third femoral shaft fractures. J Orthop Trauma. 1998;12(4):267–72. PubMed PMID: 9619462.

    CAS  PubMed  Google Scholar 

  20. Sayana MK, Davis BJ, Kapoor B, Rahmatalla A, Maffulli N. Fracture strain and stability with additional locking screws in intramedullary nailing: a biomechanical study. J Trauma. 2006;60(5):1053–7. PubMed PMID: 16688070.

    PubMed  Google Scholar 

  21. Xavier F, Goldwyn E, Hayes W, Carrer A, Elkhechen R, Berdichevsky M, et al. A comparison of the compressive strength of various distal locking screw options in the treatment of tibia fractures with intramedullary nails. J Long Term Eff Med Implants. 2011;21(3):185–92. PubMed PMID: 22150350.

    CAS  PubMed  Google Scholar 

  22. Gong F, Wang K, Dang X, Wang L. Study of the impact of the number of distal locking bolts on the biomechanical feature of locking intramedullary nails. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2005;19(1):58–60. PubMed PMID: 15704846.

    PubMed  Google Scholar 

  23. Klemm K, Schellmann WD. Dynamic and static locking of the intramedullary nail. Monatsschr Unfallheilkd Versicher Versorg Verkehrsmed. 1972;75(12):568–75. PubMed PMID: 4265351. Dynamische und statische Verriegelung des Marknagels.

    CAS  PubMed  Google Scholar 

  24. Krettek C, Schulte-Eistrup S, Schandelmaier P, Rudolf J, Tscherne H. Osteosynthesis of femur shaft fractures with the unreamed AO-femur nail. Surgical technique and initial clinical results standard lock fixation. Unfallchirurg. 1994;97(11):549–67. PubMed PMID: 7817194. Osteosynthese von Femurschaftfrakturen mit dem unaufgebohrten AO-Femurnagel (UFN). Operative Technik und erste klinische Ergebnisse mit Standardverriegelung.

    CAS  PubMed  Google Scholar 

  25. Krettek C, Schandelmaier PTH. Non-reamed interlocking nailing of closed tibial fractures with severe soft tissue injury: indications, technique and clinical results. Clin Orthop. 1995;315:34–47.

    PubMed  Google Scholar 

  26. Georgiadis GM, Minster GJ, Moed BR. Effects of dynamization after interlocking tibial nailing: an experimental study in dogs. J Orthop Trauma. 1990;4(3):323–30. PubMed PMID: 2231132.

    CAS  PubMed  Google Scholar 

  27. Brumback RJ. The rationales of interlocking nailing of the femur, tibia, and humerus. Clin Orthop Relat Res. 1996;324:292–320. PubMed PMID: 8595771.

    PubMed  Google Scholar 

  28. Dagrenat D, Moncade N, Cordey J, Rahn BA, Kempf I, Perren SM. Effects of the dynamization of static bolt nailing. In vivo experimentation. Rev Chir Orthop Reparatrice Appar Mot. 1988;74 Suppl 2:100–4. PubMed PMID: 3231749. Effets de la dynamisation d’un enclouage verrouille statique. Experimentation in vivo.

    PubMed  Google Scholar 

  29. Dagrenat DMN, Cordey J, Rahn BA, Kempf I, Perren SM. An experimental study of dynamization following static medullary nailing in comminuted diaphyseal fractures. Hefte Unfallchirurg. 1993;229:50–8.

    Google Scholar 

  30. Wu CC, Shih CH. Effect of dynamization of a static interlocking nail on fracture healing. Can J Surg. 1993;36(4):302–6. PubMed PMID: 8370009.

    CAS  PubMed  Google Scholar 

  31. Krettek C, Rudolf J, Schandelmaier P, Guy P, Konemann B, Tscherne H. Unreamed intramedullary nailing of femoral shaft fractures: operative technique and early clinical experience with the standard locking option. Injury. 1996;27(4):233–54. PubMed PMID: 8762784. Epub 1996/05/01. eng.

    CAS  PubMed  Google Scholar 

  32. Krettek C. Prinzipien der IM Stabilisierung. Teil 2. Der Unfallchirurg. 2001;104:748–71.

    Google Scholar 

  33. Krettek C. Intramedulläre Stabilisierung am Femurschaft. Neuentwicklung von Implantaten und Hilfsmitteln, experimentelle Untersuchungen und klinische Anwendung (Habilitationsschrift). [Habilitationsschrift]. Hannover: Medizinische Hochschule; 1991.

    Google Scholar 

  34. Krettek C, Konemann B, Mannss J, Schandelmaier P, Schmidt U, Tscherne H. Analysis of implantation-induced nail deformation and roentgen morphometric studies as the principle for an aiming device for distal interlocking nailing without roentgen image intensification. Unfallchirurg. 1996;99(9):671–8. PubMed PMID: 9005579. Analyse implantationsbedingter Nagelverformung und röntgenmorphometrische Untersuchungen als Grundlage fur ein Zielgerat zur distalen Verriegelung ohne Röntgenbildverstarker.

    CAS  PubMed  Google Scholar 

  35. Krettek C, Mannss J, Miclau T, Schandelmaier P, Linnemann I, Tscherne H. Deformation of femoral nails with intramedullary insertion. J Orthop Res. 1998;16(5):572–5. PubMed PMID: 9820280. Epub 1998/11/20. eng.

    CAS  PubMed  Google Scholar 

  36. Krettek C, Konemann B, Miclau T, Schlandelmaier P, Blauth M, Tscherne H. In vitro and in vivo radiomorphometric analyses of distal screw hole position of the solid tibial nail following insertion. Clin Biomech (Bristol, Avon). 1997;12(3):198–200. PubMed PMID: 11415695.

    Google Scholar 

  37. Krettek C, Mannss J, Konemann B, Miclau T, Schandelmaier P, Tscherne H. The deformation of small diameter solid tibial nails with unreamed intramedullary insertion. J Biomech. 1997;30(4):391–4. PubMed PMID: 9075008.

    CAS  PubMed  Google Scholar 

  38. Krettek C, Könemann BFO, Miclau T, Kromm A, Tscherne H. Experimental study of distal interlocking of a solid tibial nail: radiation-independent distal aiming device (DAD) vs free-hand technique (FHT). J Orthop Trauma. 1998;12:373–8.

    CAS  PubMed  Google Scholar 

  39. Krettek C, Konemann B, Miclau T, Kolbli R, Machreich T, Kromm A, et al. A new mechanical aiming device for the placement of distal interlocking screws in femoral nails. Arch Orthop Trauma Surg. 1998;117(3):147–52. PubMed PMID: 9521519.

    CAS  PubMed  Google Scholar 

  40. Krettek C, Konemann B, Miclau T, Kolbli R, Machreich T, Tscherne H. A mechanical distal aiming device for distal locking in femoral nails. Clin Orthop Relat Res. 1999;364:267–75. PubMed PMID: 10416417.

    PubMed  Google Scholar 

  41. Pardiwala D, Prabhu V, Dudhniwala G, Katre R. The AO distal locking aiming device: an evaluation of efficacy and learning curve. Injury. 2001;32(9):713–8. PubMed PMID: 11600119.

    CAS  PubMed  Google Scholar 

  42. Giri SK. Achieving distal locking without an image intensifier. Nepal Med Coll J. 2007;9(4):275–7. PubMed PMID: 18298020.

    CAS  PubMed  Google Scholar 

  43. Pennig D, Oppenheim W, Faccioli G, Rossi S. Intramedullary locked nailing of femur and tibia: insertion of distal locking screws without image intensifier. Injury. 1997;28(4):323–6. PubMed PMID: 9282193.

    CAS  PubMed  Google Scholar 

  44. Babis GC, Benetos IS, Karachalios T, Soucacos PN. Eight years’ clinical experience with the Orthofix tibial nailing system in the treatment of tibial shaft fractures. Injury. 2007;38(2):227–34. PubMed PMID: 17054957.

    PubMed  Google Scholar 

  45. Babis GC, Benetos IS, Zoubos AB, Soucacos PN. The effectiveness of the external distal aiming device in intramedullary fixation of tibial shaft fractures. Arch Orthop Trauma Surg. 2007;127(10):905–8. PubMed PMID: 17641903.

    PubMed  Google Scholar 

  46. Anastopoulos G, Ntagiopoulos PG, Chissas D, Papaeliou A, Asimakopoulos A. Distal locking of tibial nails: a new device to reduce radiation exposure. Clin Orthop Relat Res. 2008;466(1):216–20. PubMed PMID: 18196396. Pubmed Central PMCID: 2505307.

    PubMed Central  PubMed  Google Scholar 

  47. Veen EJ, Ettema HB, Zuurmond RG, Mostert AK. Are there any advantages in using a distal aiming device for tibial nailing? Comparing the Centro Nailing System with the Unreamed Tibia Nail. Injury. 2011;42(10):1049–52. PubMed PMID: 21549378.

    PubMed  Google Scholar 

  48. Grewal I, Carter P. Focus on distal locking of intramedullary nails. J Bone Joint Surg Br. 2012.

    Google Scholar 

  49. Boraiah S, Barker JU, Lorich D. Efficacy of an aiming device for the placement of distal interlocking screws in trochanteric fixation nailing. Arch Orthop Trauma Surg. 2009;129(9):1177–82. PubMed PMID: 18677491.

    PubMed  Google Scholar 

  50. Knudsen CJ, Grobler GP, Close RE. Inserting the distal screws in a locked femoral nail. J Bone Joint Surg Br. 1991;73-B:660–1. PubMed PMID: 2071655.

    Google Scholar 

  51. MacMillan M, Gross RH. A simplified technique of distal femoral screw insertion for the Grosse-Kempf interlocking nail. Clin Orthop Relat Res. 1988;226:252–9. PubMed PMID: 3335100.

    PubMed  Google Scholar 

  52. Hashemi-Nejad A, Garlick N, Goddard NJ. A simple jig to ease the insertion of distal screws in intramedullary locking nails. Injury. 1994;25(6):407–8. PubMed PMID: 8045651.

    CAS  PubMed  Google Scholar 

  53. Rohilla R, Singh R, Magu N, Devgun A, Siwach R, Gulia A. Nail over nail technique for distal locking of femoral intramedullary nails. Int Orthop. 2009;33(4):1107–12. PubMed PMID: 18500514. Pubmed Central PMCID: 2898998.

    PubMed Central  PubMed  Google Scholar 

  54. Salvi AE. The chessboard technique. A new freehand aiming method for rapid distal locking of tibial nails. Bull NYU Hosp Jt Dis. 2008;66:317–9.

    PubMed  Google Scholar 

  55. Medoff RJ. Insertion of the distal screws in interlocking nail fixation of femoral shaft fractures. J Bone Joint Surg Am. 1986;68(8):1275–7.

    CAS  PubMed  Google Scholar 

  56. Granhed HP. A new technique of distal screw insertion for locked nailing. Acta Orthop Scand. 1998;69(3):320–1.

    CAS  PubMed  Google Scholar 

  57. Pennig D, Brug E, Kronholz HL. A new distal aiming device for locking nail fixation. Orthopedics. 1988;11(12):1725–7. PubMed PMID: 3231579.

    CAS  PubMed  Google Scholar 

  58. Kelley SS, Bonar S, Hussamy OD, Morrison JA. A simple technique for insertion of distal screws into interlocking nails. J Orthop Trauma. 1995;9(3):227–30.

    CAS  PubMed  Google Scholar 

  59. Noordeen HH, Sala MJ, Belham GJ. Insertion of distal screws in interlocking intramedullary nails. Injury. 1993;24(5):357–8.

    CAS  PubMed  Google Scholar 

  60. Barrick EF. Distal locking screw insertion using a cannulated drill bit: technical note. J Orthop Trauma. 1993;7(3):248–51.

    CAS  PubMed  Google Scholar 

  61. Owen TD, Coorsh J. Insertion of the distal locking screws in femoral nailing: a simplified technique. Injury. 1993;24(2):101–3.

    CAS  PubMed  Google Scholar 

  62. Reynders P, Schonken P, Hoogmartens M. Interlocking nail: a practical aiming device for distal screw insertion. Acta Orthop Belg. 1990;56(3–4):605–8.

    CAS  PubMed  Google Scholar 

  63. Harrington P, Howell F. An aid to distal locking of the Russell—Taylor humeral nail. Injury. 1998;29(9):732–3.

    CAS  PubMed  Google Scholar 

  64. Rahman MM, Taha WS, Shaheen MM. A simple technique for distal locking of tibial nails. Injury. 1998;29(10):789–90.

    CAS  PubMed  Google Scholar 

  65. Rao JP, Allegra MP, Benevenia J, Dauhajre TA. Distal screw targeting of interlocking nails. Clin Orthop. 1989;238:245–8.

    PubMed  Google Scholar 

  66. Graham GP, Mackie IG. Experience with the AO locking femoral nail. Injury. 1988;19:249–53.

    CAS  PubMed  Google Scholar 

  67. Hudson I. Locking nailing: an aid to distal targeting. Injury. 1989;20:129–30.

    CAS  PubMed  Google Scholar 

  68. Mahaisavariya B, Laupattarakasem W, Kosuwon W. An aiming device for distal locking in closed locked femoral nailing. Injury. 1992;23(2):143–4.

    CAS  PubMed  Google Scholar 

  69. Saw Y. Closed intramedullary distal locking made easier. Injury. 1993;24(3):214–5.

    CAS  PubMed  Google Scholar 

  70. Ohe T, Nakamura K, Matsushita T, et al. Stereo fluoroscopyassisted distal interlocking of intramedullary nails. J Orthop Trauma. 1997;11(4):300–3.

    CAS  PubMed  Google Scholar 

  71. Höntzsch D. Das röntgenstrahlendurchlässige Winkelgetriebe der AO. Oper Orthop Traumatol 1992;4(9);286–290.

    Google Scholar 

  72. Lim JT, Brown MF. A simple radiolucent drill guide to aid intramedullary nail locking. Ann R Coll Surg Engl. 2005;87(3):213. PubMed PMID: 15920805. Pubmed Central PMCID: 1963928.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Goodall JD. An image intensifier laser guidance system for the distal locking of an intramedullary nail. Injury. 1991;22(4):339. PubMed PMID: 1937742.

    CAS  PubMed  Google Scholar 

  74. Stedtfeld HW, Jurowich B, Baumer F, Ertel R. Laser focusing device for the distal locking of intramedullary nails. Chirurg. 1990;61(6):469–72. PubMed PMID: 2364789. Laser-Zielvorrichtung fur die distale Verriegelung des Marknagels.

    CAS  PubMed  Google Scholar 

  75. Goulet JA, Londy F, Saltzman CL, Matthews LS. Interlocking intramedullary nails. An improved method of screw placement combining image intensification and laser light. Clin Orthop Relat Res. 1992;281:199–203. PubMed PMID: 1499210.

    PubMed  Google Scholar 

  76. Viant WJ, Phillips R, Griffiths JG, Ozanian TO, Mohsen AM, Cain TJ, et al. A computer assisted orthopaedic surgical system for distal locking of intramedullary nails. Proc Inst Mech Eng H. 1997;211(4):293–300. PubMed PMID: 9330540.

    CAS  PubMed  Google Scholar 

  77. Suhm N, Jacob LA, Zuna I, Regazzoni P, Messmer P. Fluoroscopy based surgical navitation vs. mechanical guidance system for percutaneous interventions. A controlled prospective study exemplified by distal locking of intramedullary nails. Unfallchirurg. 2003;106(11):921–8. PubMed PMID: 14634735. Fluoroskopiebasierte chirurgische Navigation vs. mechanisches Zielsystem fur perkutane Eingriffe. Eine kontrollierte prospektive Studie am Beispiel der distalen Verriegelung von Marknageln.

    CAS  PubMed  Google Scholar 

  78. Wang JQ, Zhao CP, Wang MY, Su YG, Hu L, Sun L, et al. Computer-assisted auto-frame navigation system for distal locking of tibial intramedullary nails: a preliminary report on clinical application. Chin J Traumatol. 2006;9(3):138–45.

    PubMed  Google Scholar 

  79. Malek S, Phillips R, Mohsen A, Viant W, Bielby M, Sherman K. Computer assisted orthopaedic surgical system for insertion of distal locking screws in intra-medullary nails: a valid and reliable navigation system. Int J Med Robot. 2005;1(4):34–44. PubMed PMID: 17518403.

    CAS  PubMed  Google Scholar 

  80. Zheng G, Zhang X, Haschtmann D, Gedet P, Langlotz F, Nolte LP. Accurate and reliable pose recovery of distal locking holes in computer-assisted intra-medullary nailing of femoral shaft fractures: a preliminary study. Comput Aided Surg. 2007;12(3):138–51. PubMed PMID: 17538786.

    PubMed  Google Scholar 

  81. Lee MY, Kuo CH, Hung SS. A new fluoroscopy-free navigation device for distal interlocking screw placement. J Med Eng Technol. 2008;32(4):284–95. PubMed PMID: 18666008.

    PubMed  Google Scholar 

  82. Wang JQ, Wang JF, Hu L, Su YG, Wang Y, Zhao CP, et al. Effects of medical robot-assisted surgical navigation system in distal locking of femoral intramedullary nails: an experimental study. Zhonghua Yi Xue Za Zhi. 2006;86(9):614–8. PubMed PMID: 16681907.

    PubMed  Google Scholar 

  83. Hofstetter R, Slomczykowski M, Sati M, Nolte LP. Fluoroscopy as an imaging means for computer-assisted surgical navigation. Comput Aided Surg. 1999;4(2):65–76. PubMed PMID: 10494136.

    CAS  PubMed  Google Scholar 

  84. Windolf M, Schroeder J, Fliri L, Dicht B, Liebergall M, Richards RG. Reinforcing the role of the conventional C-arm–a novel method for simplified distal interlocking. BMC Musculoskelet Disord. 2012;13:8. PubMed PMID: 22276698. Pubmed Central PMCID: 3305668.

    PubMed Central  PubMed  Google Scholar 

  85. Yaniv Z, Joskowicz L. Precise robot-assisted guide positioning for distal locking of intramedullary nails. IEEE Trans Med Imaging. 2005;24(5):624–35. PubMed PMID: 15889550.

    PubMed  Google Scholar 

  86. Juneho F, Bouazza-Marouf K, Kerr D, Taylor AJ, Taylor GJ. X-ray-based machine vision system for distal locking of intramedullary nails. Proc Inst Mech Eng H. 2007;221(4):365–75. PubMed PMID: 17605394.

    CAS  PubMed  Google Scholar 

  87. Lei H, Sheng L, Manyi W, Junqiang W, Wenyong L. A biplanar robot navigation system for the distal locking of intramedullary nails. Int J Med Robot. 2010;6(1):61–5. PubMed PMID: 20014152.

    PubMed  Google Scholar 

  88. Moreschini O, Petrucci V, Cannata R. Insertion of distal locking screws of tibial intramedullary nails: a comparison between the free-hand technique and the SURESHOT Distal Targeting System. Injury. 2014;45(2):405–7. PubMed PMID: 24140179.

    CAS  PubMed  Google Scholar 

  89. Negrin LL, Vecsei V. Is a magnetic-manual targeting device an appealing alternative for distal locking of tibial intramedullary nails? Arch Trauma Res. 2013;2(1):16–20. PubMed PMID: 24396784. Pubmed Central PMCID: 3876508.

    PubMed Central  PubMed  Google Scholar 

  90. Hoffmann M, Schroder M, Lehmann W, Kammal M, Rueger JM, Herrman Ruecker A. Next generation distal locking for intramedullary nails using an electromagnetic X-ray-radiation-free real-time navigation system. J Trauma Acute Care Surg. 2012;73(1):243–8. PubMed PMID: 22710783.

    PubMed  Google Scholar 

  91. Arlettaz Y, Dominguez A, Farron A, Ehlinger M, Moor BK. Distal locking of femoral nails: evaluation of a new radiation-independent targeting system. J Orthop Trauma. 2012;26(11):633–7. PubMed PMID: 22473064.

    PubMed  Google Scholar 

  92. Stathopoulos I, Karampinas P, Evangelopoulos DS, Lampropoulou-Adamidou K, Vlamis J. Radiation-free distal locking of intramedullary nails: evaluation of a new electromagnetic computer-assisted guidance system. Injury. 2013;44(6):872–5. PubMed PMID: 23010073.

    PubMed  Google Scholar 

  93. Hanks GA, Foster WC, Cardea JA. Treatment of femoral shaft fractures with the Brooker-Wills interlocking intramedullary nail. Clin Orthop Relat Res. 1988;226:206–18. PubMed PMID: 3335095.

    PubMed  Google Scholar 

  94. Krettek C, Haas N, Mathys Sr R, Tscherne H. Initial clinical experience with osteosynthesis of femoral shaft fractures with a newly developed intramedullary implant (claw interlocking nail). Unfallchirurg. 1991;94(1):1–8. PubMed PMID: 2028259. Erste klinische Erfahrungen mit der Osteosynthese von Oberschenkelschaftfrakturen mit einem neuentwickelten intramedullaren Implantat (Krallenverriegelungsnagel).

    CAS  PubMed  Google Scholar 

  95. Ebraheim NA, Milem CA, Jackson WT. Complicated removal of the distal locking device of Brooker-Wills. Clin Orthop Relat Res. 1993;290:275–8. PubMed PMID: 8472460.

    PubMed  Google Scholar 

  96. Ebraheim NA, Olscamp A, Jackson WT. Difficulty in removal of the distal locking device of the Brooker-Wills tibial nail. Contemp Orthop. 1995;31(3):181–4. PubMed PMID: 10155346. Epub 1995/08/06. eng.

    CAS  PubMed  Google Scholar 

  97. Ebraheim NA, Paley KJ. Penetration of the distal femur by the distal locking device of Brooker Wills interlocking nail. Clin Orthop Relat Res. 1993;297:218–23. PubMed PMID: 8242934.

    PubMed  Google Scholar 

  98. Pillips AQ, Patel AD, Donell ST. Explosion of Fixion humeral nail during cremation: novel “complication” with a novel implant. Injury Extra. 2006;37:357–8.

    Google Scholar 

  99. Thelen S, Betsch M, Grassmann JP, Spoor V, Eichler C, Koebke J, et al. Angle stable locking nails versus conventionally locked intramedullary nails in proximal tibial shaft fractures: a biomechanical study. Arch Orthop Trauma Surg. 2012;132(1):57–63. PubMed PMID: 21877127.

    PubMed  Google Scholar 

  100. Gueorguiev B, Wahnert D, Albrecht D, Ockert B, Windolf M, Schwieger K. Effect on dynamic mechanical stability and interfragmentary movement of angle-stable locking of intramedullary nails in unstable distal tibia fractures: a biomechanical study. J Trauma. 2011;70(2):358–65. PubMed PMID: 20526207.

    PubMed  Google Scholar 

  101. Muckley T, Hoffmeier K, Klos K, Petrovitch A, von Oldenburg G, Hofmann GO. Angle-stable and compressed angle-stable locking for tibiotalocalcaneal arthrodesis with retrograde intramedullary nails. Biomechanical evaluation. J Bone Joint Surg Am. 2008;90(3):620–7. PubMed PMID: 18310713.

    PubMed  Google Scholar 

  102. Hoegel FW, Hoffmann S, Weninger P, Buhren V, Augat P. Biomechanical comparison of locked plate osteosynthesis, reamed and unreamed nailing in conventional interlocking technique, and unreamed angle stable nailing in distal tibia fractures. J Trauma Acute Care Surg. 2012;73(4):933–8. PubMed PMID: 22710777.

    PubMed  Google Scholar 

  103. Wahnert D, Stolarczyk Y, Hoffmeier KL, Raschke MJ, Hofmann GO, Muckley T. Long-term stability of angle-stable versus conventional locked intramedullary nails in distal tibia fractures. BMC Musculoskelet Disord. 2013;14:66. PubMed PMID: 23425016. Pubmed Central PMCID: 3598499.

    PubMed Central  PubMed  Google Scholar 

  104. Park SH, O’Connor K, McKellop H, Sarmiento A. The influence of active shear or compressive motion on fracture-healing. J Bone Joint Surg Am. 1998;80(6):868–78. PubMed PMID: 9655105.

    CAS  PubMed  Google Scholar 

  105. Kaspar K, Schell H, Seebeck P, Thompson MS, Schutz M, Haas NP, et al. Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. J Bone Joint Surg Am. 2005;87(9):2028–37. PubMed PMID: 16140819.

    CAS  PubMed  Google Scholar 

  106. Horn J, Linke B, Hontzsch D, Gueorguiev B, Schwieger K. Angle stable interlocking screws improve construct stability of intramedullary nailing of distal tibia fractures: a biomechanical study. Injury. 2009;40(7):767–71. PubMed PMID: 19450799.

    CAS  PubMed  Google Scholar 

  107. Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003;21(6):1011–7. PubMed PMID: 14554213.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Krettek MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Krettek, C., Baumann, A. (2015). Interlocking. In: Rommens, P., Hessmann, M. (eds) Intramedullary Nailing. Springer, London. https://doi.org/10.1007/978-1-4471-6612-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6612-2_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6611-5

  • Online ISBN: 978-1-4471-6612-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics