Skip to main content

Pertrochanteric Fractures: Cement Augmentation

  • Chapter
  • First Online:
Intramedullary Nailing
  • 1954 Accesses

Abstract

Implant augmentation aims to increase the implant to bone surface and to reduce the stresses on the trabecular structures. Augmentation is performed by the injection of small amounts of PMMA through the implant. The additional stability has been shown in biomechanical and clinical studies on Dynamic Hip Screw (DHS) augmentation and on proximal femoral nail augmentation. The decision for augmentation is made after implantation of the helical blade and is based on the clinical judgement of the bone strength of the femoral head during blade insertion by the surgeon. The only contra-indication for proximal femoral nail augmentation is a perforation of the femoral head by the Kirschner-wire or by the helical blade because this would lead to cement leakage in the hip joint. Until now, there is only limited clinical experience. All fractures showed callus formation, no osteonecrosis of the femoral head or lysis around the blade was noticed and no implant migration like cut-out or cut-through was seen. The data suggest that the rate of complications directly related to implant augmentation is very low when the technique is applied correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22:465–75.

    Article  PubMed  Google Scholar 

  2. Boonen S, Dejaeger E, Vanderschueren D, Venken K, Bogaerts A, Verschueren S, et al. Osteoporosis and osteoporotic fracture occurrence and prevention in the elderly: a geriatric perspective. Best Pract Res Clin Endocrinol Metab. 2008;22(5):765–85.

    Article  PubMed  Google Scholar 

  3. Haentjens P, Magaziner J, Colón-Emeric C, Vanderschueren D, Milisen K, Velkeniers B, et al. Meta-analysis: excess mortality after hip fractures among older women and men. Ann Intern Med. 2010;152(6):380–90.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Parker MJ, Handoll HHG. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults (review). Cochrane Database Syst Rev. 2008;(3):CD000093. doi:10.1002/14651858.CD000093.pub.4.

  5. Radcliff TA, Regan E, Cowper Ripley DC, Hutt E. Increased use of intramedullary nails for intertrochanteric proximal femoral fractures in veterans affairs hospitals. J Bone Joint Surg Am. 2012;94:833–40.

    PubMed  Google Scholar 

  6. Parker MJ, Handoll HHG. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults (review). Cochrane Database Syst Rev. 2005;(4):CD000093. doi:10.1002/14651858.CD000093.pub.3.

  7. Tang P, Hu F, Shen J, Zhang L, Zhang L. Proximal femoral nail antirotation versus hemiarthroplasty: a study for the treatment of intertrochanteric fractures. Injury. 2012;43:876–81.

    Article  PubMed  Google Scholar 

  8. Gong H, Wang L, Zheng D, Fan Y. The potential application of functionally graded material for proximal femoral nail antirotation device. Med Hypotheses. 2012;79:415–7.

    Article  PubMed  Google Scholar 

  9. Parker MJ, Handoll HHG. Intramedullary nails for extracapsular hip fractures in adults. Cochrane Database Syst Rev. 2006;(3):CD004961. doi:10.1002/14651858.CD004961.pub3.

  10. Strauss E, Frank J, Lee J, Kummer FJ, Tejwani N. Helical blade versus sliding hip screw for treatment of unstable intertrochanteric hip fractures: a biomechanical evaluation. Injury. 2006;37:984–9.

    Article  PubMed  Google Scholar 

  11. Windolf M, Braunstein V, Dutoit C, Schwieger K. Is a helical shaped implant a superior alternative to the Dynamic Hip Screw for unstable femoral neck fractures? A biomechanical evaluation. Clin Biomech. 2009;24:59–64.

    Article  Google Scholar 

  12. Soucanye de Landevoisin E, Bertani A, Candoni P, Charpail C, Demortiere E. Proximal femoral nail antirotation (PFN-ATM) fixation of extra-capsular proximal femoral fractures in the elderly: retrospective study in 102 patients. Orthop Traumatol Surg Res. 2012;98:288–95.

    Article  CAS  PubMed  Google Scholar 

  13. Takigami I, Matsumoto K, Ohara A, Yamanaka K, Naganawa T, Ohashi M, et al. Treatment of trochanteric fractures with the PFNA (proximal femoral nail antirotation) nail system – report of early results. Bull NYU Hosp Jt Dis. 2008;66:276–9.

    PubMed  Google Scholar 

  14. Mereddy P, Kamath S, Ramakrishnan M, et al. The AO/ASIF proximal femoral nail antirotation (PFNA): a new design for the treatment of unstable proximal femoral fractures. Injury. 2009;40:428–32.

    Article  PubMed  Google Scholar 

  15. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am. 1995;77:1058–64.

    CAS  PubMed  Google Scholar 

  16. Pervez H, Parker MJ, Vowler S. Prediction of fixation failure after sliding hip screw fixation. Injury. 2004;35:994–8.

    Article  PubMed  Google Scholar 

  17. Bonnaire F, Weber A, Bosl O, Eckhardt C, Schwieger K, Linke B. “Cutting-out” in pertrochanteric fractures – problem of osteoporosis. Unfallchirurg. 2007;110:425–32.

    Article  CAS  PubMed  Google Scholar 

  18. Barrios C, Brostrom LA, Stark A, Walheim G. Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma. 1993;7:438–42.

    Article  CAS  PubMed  Google Scholar 

  19. Moroni A, Hoang-Kim A, Lio V, Gannini S. Current augmentation fixation techniques for the osteoporotic patient. Scand J Surg. 2005;94:103–9.

    Google Scholar 

  20. Wu MH, Lee PC, Peng KT, Wu CC, Huang TJ, Hsu RWW. Complications of cement-augmented dynamic hip screws in unstable type intertochanteric fractures – a case series study. Chang Gung Med J. 2012;35:345–53.

    PubMed  Google Scholar 

  21. Augat P, Rapp S, Claes L. A modified hip screw incorporating injected cement for the fixation of osteoporotic trochanteric fractures. J Orthop Trauma. 2002;16:311–6.

    Article  PubMed  Google Scholar 

  22. Bartucci EJ, Gonzalez MH, Cooperman DR, Freedberg HI, Barmada R, Laros GS. The effect of adjunctive methylmethacrylate on failures of fixation and function in patients with intertrochanteric fractures and osteoporosis. J Bone Joint Surg Am. 1985;67:1094–107.

    CAS  PubMed  Google Scholar 

  23. Szpalski M, Descamps PY, Hayez JP, Raad E, Gunzburg R, Keller TS, et al. Prevention of hip lag screw cut-out by cement augmentation: description of a new technique and preliminary clinical results. J Orthop Trauma. 2004;18:34–40.

    Article  PubMed  Google Scholar 

  24. von der Linden P, Gisep A, Boner V, Windolf M, Appelt A, Suhm N. Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res. 2006;24:2230–7.

    Article  PubMed  Google Scholar 

  25. Sermon A, Boner V, Boger A, Schwieger K, Boonen S, Broos P, et al. Potential of polymethylmethacrylate cement-augmented helical proximal femoral nail antirotation blades to improve implant stability – a biomechanical investigation in human cadaveric femoral heads. J Trauma. 2012;72:54–9.

    Google Scholar 

  26. Choueka J, Koval KJ, Kummer FJ, Zuckerman JD. Cement augmentation of intertrochanteric fracture fixation: a cadaver comparison of 2 techniques. Acta Orthop Scand. 1996;67:153–7.

    Article  CAS  PubMed  Google Scholar 

  27. Sermon A, Boner V, Schwieger K, Boger A, Boonen S, Broos P, et al. Biomechanical evaluation of bone-cement augmented Proximal Femoral Nail Antirotation blades in a polyurethane foam model with low density. Clin Biomech. 2012;27:71–6.

    Article  CAS  Google Scholar 

  28. Erhart S, Schmoelz W, Blauth M, Lenich A. Biomechanical effect of bone cement augmentation on rotational stability and pull-out strength of the Proximal Femoral Nail Antirotation. Injury. 2011;42:1322–7.

    Article  CAS  PubMed  Google Scholar 

  29. Stoffel KK, Leys T, Damen N, Nicholls RL, Kuster MS. A new technique for cement augmentation of the sliding hip screw in proximal femur fractures. Clin Biomech. 2008;23:45–51.

    Article  Google Scholar 

  30. Cheng CL, Chow SP, Pun WK, Leong JC. Long-term results and complications of cement augmentation in the treatment of unstable trochanteric fractures. Injury. 1989;20:134–8.

    Article  CAS  PubMed  Google Scholar 

  31. Heini PF, Franz T, Fankhauser C, Gasser B, Ganz R. Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones. Clin Biomech. 2004;19:506–12.

    Article  Google Scholar 

  32. Boner V, Kuhn P, Mendel T, Gisep A. Temperature evaluation during PMMA screw augmentation in osteoporotic bone – an in vitro study about the risk of thermal necrosis in human femoral heads. J Biomed Mater Res B Appl Biomater. 2009;90:842–8.

    Article  PubMed  Google Scholar 

  33. Fliri L, Lenz M, Boger A, Windolf M. Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. J Trauma. 2012;72:1098–101.

    Google Scholar 

  34. Biehl G, Harms J, Hanser U. Experimental studies on heat development in bone during polymerization of bone cement. Intraoperative measurement of temperature in normal blood circulation and in bloodlessness. Arch Orthop Unfallchir. 1974;78:62–9.

    Article  CAS  PubMed  Google Scholar 

  35. Paré PE, Chappuis JL, Rampersaud R, Agarwala AO, Perra JH, Erkan S. Biomechanical evaluation of a novel fenestrated pedicle screw augmented with bone cement in osteoporotic spines. Spine. 2011;36:E1210–4.

    Article  PubMed  Google Scholar 

  36. Kammerlander C, Gebhard F, Meier C, Lenich A, Linhart W, Clasbrummel B, et al. Standardised cement augmentation of the PFNA using a perforated blade: a new technique and preliminary clinical results. A prospective multicentre trial. Injury. 2011;42:1484–90.

    Article  CAS  PubMed  Google Scholar 

  37. Mattsson P, Larsson S. Calcium phosphate cement for augmentation did not improve results after internal fixation of displaced femoral neck fractures. Acta Orthop. 2006;77:251–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Sermon MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Sermon, A. (2015). Pertrochanteric Fractures: Cement Augmentation. In: Rommens, P., Hessmann, M. (eds) Intramedullary Nailing. Springer, London. https://doi.org/10.1007/978-1-4471-6612-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6612-2_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6611-5

  • Online ISBN: 978-1-4471-6612-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics