Advertisement

Robust Performance Analysis of Discrete-Time Periodic Systems

  • Yoshio EbiharaEmail author
  • Dimitri Peaucelle
  • Denis Arzelier
Chapter
Part of the Communications and Control Engineering book series (CCE)

Abstract

Chapter  7 is dedicated to the analysis of discrete-time periodic systems by means of SV-LMIs. For that special case the SV-LMIs have interesting non-causal system interpretations. Similarly to the LTI case, SV-LMIs are effective for reducing the conservatism of the analysis results when dealing with discrete-time periodic systems affected by polytopic uncertainties.

References

  1. 1.
    Bittanti S, Colaneri P (1996) Analysis of discrete-time linear periodic systems. In: Leondes CT (ed) Control and dynamic systems. Academic Press, New York, pp 313–339Google Scholar
  2. 2.
    Bittanti S, Bolzern P, Colaneri P (1985) The extended periodic Lyapunov lemma. Automatica 21:603–605MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    De Souza CE, Trofino A (2000) An LMI approach to stabilization of linear discrete-time periodic systems. Int J Control 73:696–709CrossRefzbMATHGoogle Scholar
  4. 4.
    Ebihara Y, Peaucelle D, Arzelier D (2010) Analysis of uncertain discrete-time linear periodic systems based on system lifting and LMIs. Eur J Control 16(5):532–544MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bittanti S, Colaneri P (2009) Periodic systems: filtering and control. Springer, LondonGoogle Scholar
  6. 6.
    Zhang C, Zhang J, Furuta K (1997) Analysis of \(H_2\) and \(H_\infty \) performance of discrete periodically time-varying controllers. Automatica 33(4):619–634MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Farges C, Peaucelle D, Arzelier D, Daafouz J (2007) Robust \(H_2\) performance analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs. Syst Control Lett 56:159–166MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ebihara Y, Peaucelle D, Arzelier D (2008) Periodically time-varying dynamical controller synthesis for polytopic-type uncertain discrete-time linear systems. In: Proceedings of the conference on decision and control, pp 5438–5443Google Scholar
  9. 9.
    Ebihara Y (2013) Periodically time-varying memory state-feedback for robust \(H_2\) control of uncertain discrete-time linear systems. Asian J Control 15(2):409–419MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653MathSciNetCrossRefGoogle Scholar
  11. 11.
    Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the IEEE computer aided control system design, pp 284–289Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Yoshio Ebihara
    • 1
    Email author
  • Dimitri Peaucelle
    • 2
  • Denis Arzelier
    • 2
  1. 1.Department of Electrical EngineeringKyoto UniversityKyotoJapan
  2. 2.Laboratory for Analysis and Architecture of Systems ScienceNational Centre for Scientific ResearchToulouseFrance

Personalised recommendations