Advertisement

Static Output-Feedback Synthesis

  • Yoshio Ebihara
  • Dimitri Peaucelle
  • Denis Arzelier
Chapter
Part of the Communications and Control Engineering book series (CCE)

Abstract

While the two previous chapters address control design cases which have LMI solutions, Chap.  6 tackles the hard problem of static output-feedback design. No polynomial-time optimization method exists for that problem, and if keeping in the matrix inequality framework, one has to resort to iterative LMI algorithms. For that important and hard problem, the SV approach produces a sophisticated version of such iterative LMI algorithm. In this case, the structuring of the S-variables reveals a virtual stabilizing state feedback. This original design procedure is detailed and tested on examples.

References

  1. 1.
    Syrmos VL, Abdallah CT, Dorato P, Grigoriadis K (1997) Static output feedback: a survey. Automatica 33(2):125–137MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anderson BDO, Bose NK, Jury EI (1975) Output feedback stabilization and related problems—solutions via decision methods. IEEE Trans Automat Control 20(1):53–66MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Rotea MA, Iwasaki T (1994) An alternative to the D-K iteration?. In: American control conference, Baltimore, pp 53–57Google Scholar
  4. 4.
    Iwasaki T, Skelton RE (1995) The XY-centring algorithm for the dual LMI problem: a new approach to fixed-order control design. Int J Control 62(6):1257–1272MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Geromel JC, Peres PLD, Souza SR (1996) Convex analysis of output feedback control problems: robust stability and performance. IEEE Trans Automat Control 41(7):997–1003MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    El Ghaoui L, Oustry F, AitRami M (1997) A cone complementarity linearization algorithm for static ouput-feedback and related problems. IEEE Trans Automat Control 42(8):1171–1176MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Geromel JC, de Souza CC, Skelton RE (1998) Static output feedback controllers: stability and convexity. IEEE Trans Automat Control 43(1):120–125MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Iwasaki T (1999) The dual iteration for fixed-order control. IEEE Trans Automat Control 44(4):783–788MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Grigoriadis KM, Beran EB (2000) In: El Ghaoui L, Niculescu SI (eds) Advances in linear matrix inequality methods in control, chapter 13: alternating projection algorithms for linear matrix inequalities problems with rank constraints. SIAM, PhiladelphiaGoogle Scholar
  10. 10.
    de Oliveira MC, Geromel JC (1997) Numerical comparison of output feedback design methods. In: American control conference, Albuquerque, New Mexico, June 1997Google Scholar
  11. 11.
    Leibfritz F (2001) An LMI-based algorithm for designing suboptimal static \(H_2/H_\infty \) output feedback controllers. SIAM J Control Optim 39(6):1711–1735MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Apkarian P, Arzelier D, Henrion D, Peaucelle D (2003) Quelques perspectives pour la programmation mathèmatique en thèorie de la commande robuste. In: ROADEF, Avignon, France, pp 268–270Google Scholar
  13. 13.
    Burke JV, Henrion D, Lewis AS, Overton ML (2006) Stabilization via nonsmooth, nonconvex optimization. IEEE Trans Automat Control 51:1760–1769MathSciNetCrossRefGoogle Scholar
  14. 14.
    Burke JV, Henrion D, Lewis AS, Overton ML (2006) Hifoo—a matlab package for fixed-order controller design and H-infinity optimization. In: IFAC symposium on robust control design, ROCOND06, Toulouse, France, June 2006Google Scholar
  15. 15.
    Apkarian P, Noll D (2006) Nonsmooth \({H}_\infty \) synthesis. IEEE Trans Autom Control 51(1):71–86MathSciNetCrossRefGoogle Scholar
  16. 16.
    Apkarian P, Noll D (2006) Controller design via nonsmooth multi-directional search. SIAM J Control Optim 44(6):1923–1949MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Peaucelle D, Arzelier D (2001) An efficient numerical solution for \(H_2\) static output feedback synthesis. In: European control conference, Porto, Portugal, September 2001, pp 3800–3805Google Scholar
  18. 18.
    Prempain E, Postlethwaite I (2005) Static H-infinity loop shaping control of a fly-by-wire helicopter. Automatica 41(9):1517–1528MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gumussoy S, Millstone M, Overton ML (2008) \({H}_\infty \) strong stabilization via HIFOO, a package for fixed-order controller design. In: IEEE conference on decision and control, Cancun, Mexico, December 2008Google Scholar
  20. 20.
    Gumussoy S, Overton ML (2008) Fixed-order \({H}_\infty \) controller design via HIFOO, a specialized nonsmooth optimization package. In: IEEE American control conference, pp 2750–2754, Seattle, USA, June 2008Google Scholar
  21. 21.
    Apkarian P, Noll D, Rondepierre A (2008) Mixed \({H}_2/{H}_\infty \) control via nonsmooth optimization. SIAM J Control Optim 47(3):1516–1546MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Henrion D (2006) Solving static output feedback problems by direct search optimization. In: Proceedings of the joint IEEE CCA/CACSD/ISIC conference, Munich, Germany, October 2006Google Scholar
  23. 23.
    Gumussoy S, Henrion D, Millstone M, Overton ML (2009) Multiobjective robust control with HIFOO 2.0. In: IFAC robust control design, ROCOND09, Haifa, Israel, June 2009Google Scholar
  24. 24.
    Bernussou J, Geromel JC, Peres PLD (1989) A linear programing oriented procedure for quadratic stabilization of uncertain systems. Syst Control Lett 13:65–72MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Astolfi A, Colaneri P (2005) Hankel/Toeplitz matrices and the static output feedback stabilization problem. Math Control Signals Syst 17(4):231–268MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ebihara Y, Tokuyama K, Hagiwara T (2004) Structured controller synthesis using lmi and alternating projection method. Int J Control 77(12):1137–1147MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Ebihara Y, Hagiwara T (2003) Structured controller synthesis using LMI and alternating projection method. In: IEEE conference on decision and control, pp 5632–5637, Maui, Hawaii, USA, December 2003Google Scholar
  28. 28.
    Henrion D, Arzelier D, Peaucelle D (2003) Positive polynomial matrices and improved LMI robustness conditions. Automatica 39(8):1479–1485MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Henrion D, Šebek M, Kučra V (2003) Positive polynomials and robust stabilization with fixed-order controllers. IEEE Trans Automat Control 48(7):1178MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ackermann J (1993) Robust control: systems with uncertain physical parameters. Springler, LondonCrossRefMATHGoogle Scholar
  31. 31.
    Levine WS, Athans M (1970) On the determination of the optimal constant output feedback gains fro linear multivariable systems. IEEE Trans Autom Control 15(1):44–48MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhou K, Doyle JC, Glover K (1996) Robust and opimal control. Prentice Hall, Englewood CliffsGoogle Scholar
  33. 33.
    Coxson GE, Demarco CL (1991) Testing robust stability of general matrix polytopes is an NP-hard computation. In: Proceedings of the allerton conference on communication, control and computingMonticello, pp 105–106, Illinois, USA, October 1991Google Scholar
  34. 34.
    Benton RE, Smith D (2000) A non-iterative LMI-basedalgorithm for robust static output feedback stabilization. Int J Control Autom Syst 72(14):1322–1330MathSciNetGoogle Scholar
  35. 35.
    Arzelier D, Peaucelle D (2002) An iterative method for mixed \({H_2/H_\infty }\) synthesis via static output-feedback. In: IEEE conference on decision and control, Las Vegas, December 2002Google Scholar
  36. 36.
    Gryazina EN, Polyak BT (2006) Stability domain in the parameter space: D-decomposition revisited. Automatica 42(1):13–26MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Arzelier D, Gryazina EN, Peaucelle D, Polyak BT (2010) Mixed LMI/randomized methods for static output feedback control design. In: American control conference, Baltimore, June 2010Google Scholar
  38. 38.
    Leibfritz F, Lipinski W (2003) Description of the benchmark examples in compleib 1.0. Technical report, Department of Mathematics, University of Trier. www.complib.de
  39. 39.
    Leibfritz F, Lipinski W (2004) COMPleib 1.0: COnstraint Matrix-optimization Problem - user manual and quick reference. Technical report, Department of Mathematics, University of Trier. www.complib.de
  40. 40.
    Prempain E (2005) A comparison of two algorithms for the static \(H_\infty \) loop shaping problem. In IFAC World Congress, Prague, July 2005Google Scholar
  41. 41.
    Henrion D, Sebek M (2008) Plane geometry and convexity of polynomial stability regions. In: Proceedings of the international symposium on symbolic and algebraic computations (ISSAC), Hagenberg, Austria, July 2008Google Scholar
  42. 42.
    Colaneri P, Geromel JC, Locatelli A (1997) Control theory and design : an \(RH_2\) and \(RH_\infty \) viewpoint. Academic Press, LondonGoogle Scholar
  43. 43.
    Keel L, Bhattacharyya SP, Howze JW (1988) Robust control with structured perturbations. IEEE Trans Automat Control 33:68–78MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Yoshio Ebihara
    • 1
  • Dimitri Peaucelle
    • 2
  • Denis Arzelier
    • 2
  1. 1.Department of Electrical EngineeringKyoto UniversityKyotoJapan
  2. 2.Laboratory for Analysis and Architecture of Systems ScienceNational Centre for Scientific ResearchToulouseFrance

Personalised recommendations