Advertisement

Robust Performance Analysis of LTI Systems

  • Yoshio EbiharaEmail author
  • Dimitri Peaucelle
  • Denis Arzelier
Chapter
Part of the Communications and Control Engineering book series (CCE)

Abstract

The primary goal of Chap. 2 is founding the basic idea of the SV approach. Before generalizing the technique (which is done in the following chapters), we show its effectiveness on simple essential control problems. We mainly consider the robust performance analysis problems of linear time-invariant systems affected by parametric uncertainties, and clarify why the SV-LMIs do perform well on these intractable infinite-dimensional semi-infinite problems. We also highlight the improvements in terms of conservatism both theoretically and on examples.

References

  1. 1.
    Zhou K, Doyle JC (1997) Essentials of robust control. Prentice Hall, Englewood CliffszbMATHGoogle Scholar
  2. 2.
    Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM Studies in Applied Mathematics, PhiladelphiaCrossRefzbMATHGoogle Scholar
  3. 3.
    Skelton RE, Iwasaki T, Grigoriadis K (1998) A unified approach to linear control design., Systems and controlTaylor and Francis, LondonGoogle Scholar
  4. 4.
    Peaucelle D, Arzelier D, Bachelier O, Bernussou J (2000) A new robust D-stability condition for real convex polytopic uncertainty. Syst Control Lett 40(1):21–30MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chilali M (1996) Méthodes LMI pour l’Analyse et la Synthèse Multi-Critère. PhD thesis, Paris IX, DauphineGoogle Scholar
  6. 6.
    Haddad WM, Bernstein DS (1992) Controller design with regional pole constraints. IEEE Trans Autom Control 37:54–61MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Trentelman HL, Stoorvogel AA, Hutus M (2001) Control theory for linear systems. Springer, LondonCrossRefzbMATHGoogle Scholar
  8. 8.
    Rantzer A (1996) On the Kalman-Yakubovitch-Popov lemma. Syst Control Lett 28:7–10MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fallah MS, Bhat R, Xie W (2009) \(H_\infty \) robust control of active suspensions: a practical point of view. In: American control conference, pp 1385–1389, St. Louis, 2009Google Scholar
  10. 10.
    Chevarria G, Peaucelle D, Arzelier D, Puyou G (2010) Robust analysis of the longitudinal control of a civil aircraft using RoMulOC. In: IEEE conference on computer aided control system design, Yokohama, Septembre 2010Google Scholar
  11. 11.
    Hecker S, Pfifer H (2010) Generation of lfrs for the cofcluo nonlinear aircraft model. In: 2nd workshop on clearance of flight control laws, Stockholm, 2010Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Yoshio Ebihara
    • 1
    Email author
  • Dimitri Peaucelle
    • 2
  • Denis Arzelier
    • 2
  1. 1.Department of Electrical EngineeringKyoto UniversityKyotoJapan
  2. 2.Laboratory for Analysis and Architecture of Systems ScienceNational Centre for Scientific ResearchToulouseFrance

Personalised recommendations