Skip to main content

Biological Systems: Multiscale Modeling Based on Mixture Theory

  • Chapter
  • First Online:
Multiscale Modeling in Biomechanics and Mechanobiology

Abstract

Scientific understanding of complex biological systems has recently benefited from mathematical and computational modeling. Classical biological studies are focused on observation and experimentation. However, mathematical modeling and computer simulation can provide useful guidance and insightful interpretations for experimental studies. Mathematical modeling can also be used to characterize complex biological phenomena, such as cell migration, cancer metastasis, tumor growth, bone remodeling, and wound healing. Since these phenomena occur over varying spatial and temporal scales, it is necessary to use multiscale modeling approaches. This book chapter provides an overview of multiscale mathematical methods for developing models for aforementioned biological phenomena based on so-called mixture theory. In Sect. 11.1, we cover the background about multiscale modeling in general applications as well as biology specific applications, Sect. 11.2 presents the multiscale computational methods and the challenges associated with modeling complex biological systems and processes, Sect. 11.3 presents theories and their applications of four example model problems, and Sect. 11.4 concludes with open questions in multiscale mathematical modeling, especially in biomedical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.K. Liu, E.G. Karpov, H.S. Park, Nano mechanics and materials: theory, multiscale methods and applications (Wiley, 2006).

    Google Scholar 

  2. T.S. Deisboeck, G.S. Stamatakos, Multiscale cancer modeling, vol. 34 (CRC PressI Llc, 2010).

    Google Scholar 

  3. S. Schnell, R. Grima, P. Maini, Am. Sci 95(2), 134 (2007).

    Article  Google Scholar 

  4. V. Cristini, J. Lowengrub, Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach (Cambridge University Press, 2010).

    Google Scholar 

  5. S. Xiao, T. Belytschko, Computer methods in applied mechanics and engineering 193(17), 1645 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Zhang, R. Khare, Q. Lu, T. Belytschko, International Journal for Numerical Methods in Engineering 70(8), 913 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Sunyk, P. Steinmann, International Journal of Solids and Structures 40(24), 6877 (2003).

    Article  MATH  Google Scholar 

  8. E.B. Tadmor, M. Ortiz, R. Phillips, Philosophical Magazine A 73(6), 1529 (1996).

    Article  Google Scholar 

  9. J. Oden, T. Strouboulis, P. Devloo, Computer Methods in Applied Mechanics and Engineering 59(3), 327 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  10. W.A. Curtin, R.E. Miller, Modelling and simulation in materials science and engineering 11(3), R33 (2003).

    Article  Google Scholar 

  11. L. Shilkrot, R. Miller, W. Curtin, Physical review letters 89(2), 025501 (2002).

    Article  Google Scholar 

  12. L. Shilkrot, R.E. Miller, W.A. Curtin, Journal of the Mechanics and Physics of Solids 52(4), 755 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Van der Giessen, A. Needleman, Modelling and Simulation in Materials Science and Engineering 3(5), 689 (1995).

    Article  Google Scholar 

  14. F.F. Abraham, J.Q. Broughton, N. Bernstein, E. Kaxiras, EPL (Europhysics Letters) 44(6), 783 (1998).

    Article  Google Scholar 

  15. R.E. Rudd, J.Q. Broughton, Physical Review B 58(10), R5893 (1998).

    Article  Google Scholar 

  16. N.V. Mantzaris, S. Webb, H.G. Othmer, Journal of mathematical biology 49(2), 111 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  17. M.A. Chaplain, S.R. McDougall, A. Anderson, Annu. Rev. Biomed. Eng. 8, 233 (2006).

    Article  Google Scholar 

  18. A.R. Anderson, Mathematical Medicine and Biology 22(2), 163 (2005).

    Article  MATH  Google Scholar 

  19. J. Berthier, P. Silberzan, Microfluidics for biotechnology. Second Edition. (Artech House, 2010).

    Google Scholar 

  20. B.M. OConnell, M.T. Walsh, Annals of biomedical Engineering 38(4), 1354 (2010).

    Google Scholar 

  21. K. Vafai, Porous media: Application in biological systems and biotechnology (CRC Press, 2011).

    Google Scholar 

  22. B. Verleye, M. Klitz, R. Croce, D. Roose, S. Lomov, I. Verpoest, Computation of the Permeability of Textiles (SFB 611, 2006).

    Google Scholar 

  23. C.C. Wong, Modelling the effects of textile preform architecture on permeability. Ph.D. thesis, The University of Nottingham (2006).

    Google Scholar 

  24. A.F.S. Rahul Vallabh, Pamela Banks-Lee, Journal of Engineered Fibers and Fabrics 5(3), 7 (2010).

    Google Scholar 

  25. K.B. Chandran, A.P. Yoganathan, S.E. Rittgers, Biofluid mechanics: the human circulation (CRC Press, 2012).

    Google Scholar 

  26. M.H. Kroll, The Journal of The American Society of Hematology 88, No. 5 (September 1), 1525 (1996).

    Google Scholar 

  27. R.L. Fournier, Basic Transport Phenoma in Biomedical Engineering (Taylor and Francis Group, 2007).

    Google Scholar 

  28. K. Lee, H. Lee, K.H. Bae, T.G. Park, Biomaterials 31(25), 6530 (2010).

    Article  Google Scholar 

  29. K. Sutherland, Filters and filtration Handbook (Elsevier, 2008).

    Google Scholar 

  30. R. Atkin, R. Craine, The Quarterly Journal of Mechanics and Applied Mathematics 29(2), 209 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Ricken, A. Schwarz, J. Bluhm, Computational materials science 39(1), 124 (2007).

    Article  Google Scholar 

  32. S. Wise, J. Lowengrub, H. Frieboes, V. Cristini, Journal of theoretical biology 253(3), 524 (2008).

    Article  MathSciNet  Google Scholar 

  33. D. Ambrosi, L. Preziosi, Mathematical Models and Methods in Applied Sciences 12(05), 737 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Preziosi. Cancer modeling and simulation. mathematical and computational biology (2003).

    Google Scholar 

  35. J.T. Oden, A. Hawkins, S. Prudhomme, Mathematical Models and Methods in Applied Sciences 20(03), 477 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Ambrosi, F. Mollica, International Journal of Engineering Science 40(12), 1297 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  37. B.D. Coleman, W. Noll, Archive for Rational Mechanics and Analysis 13(1), 167 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Armitage, R. Doll, British journal of cancer 8(1), 1 (1954).

    Article  Google Scholar 

  39. J.P. Ward, J. King, Mathematical Medicine and Biology 14(1), 39 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Grecu, A. Carstea, A. Grecu, A. Visinescu, Romanian Reports in Physics 59(2), 447 (2007).

    Google Scholar 

  41. J.P. Tian, K. Stone, T.J. Wallin, DYNAMICAL SYSTEMS pp. 771–779 (2009).

    Google Scholar 

  42. B.A. Lloyd, D. Szczerba, G. Székely, in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2007 (Springer, 2007), pp. 874–881.

    Google Scholar 

  43. T. Roose, S.J. Chapman, P.K. Maini, Siam Review 49(2), 179 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  44. P. Macklin, S. McDougall, A.R. Anderson, M.A. Chaplain, V. Cristini, J. Lowengrub, Journal of mathematical biology 58(4–5), 765 (2009).

    Article  MathSciNet  Google Scholar 

  45. W.Y. Tan, Handbook of cancer models with applications, vol. 9 (World Scientific, 2008).

    Google Scholar 

  46. D. Wodarz, N.L. Komarova, Computational biology of cancer: lecture notes and mathematical modeling (World Scientific Publishing Company, 2005).

    Google Scholar 

  47. S. Astanin, L. Preziosi, in Selected Topics in Cancer Modeling (Springer, 2008), pp. 1–31.

    Google Scholar 

  48. A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Journal of Computational Physics 71(2), 231 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  49. G.S. Jiang, C.W. Shu, Efficient implementation of weighted eno schemes. Tech. rep., DTIC Document (1995).

    Google Scholar 

  50. J.W. Barrett, J.F. Blowey, H. Garcke, SIAM Journal on Numerical Analysis 37(1), 286 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  51. C.M. Elliott, S. Larsson, Mathematics of Computation 58(198), 603 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  52. D. Kay, R. Welford, Journal of Computational Physics 212(1), 288 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  53. R.D. Travasso, M. Castro, J.C. Oliveira, Philosophical Magazine 91(1), 183 (2011).

    Article  Google Scholar 

  54. R.D. Travasso, E.C. Poiré, M. Castro, J.C. Rodrguez-Manzaneque, A. Hernández-Machado, PloS one 6(5), e19989 (2011).

    Article  Google Scholar 

  55. T. Belytschko, S. Loehnert, J.H. Song, International Journal for Numerical Methods in Engineering 73(6), 869 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Zhang, S.L. Mielke, R. Khare, D. Troya, R.S. Ruoff, G.C. Schatz, T. Belytschko, Physical Review B 71(11), 115403 (2005).

    Article  Google Scholar 

  57. W.K. Liu, S. Hao, T. Belytschko, S. Li, C.T. Chang, International Journal for Numerical Methods in Engineering 47(7), 1343 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  58. M. Tawhai, J. Bischoff, D. Einstein, A. Erdemir, T. Guess, J. Reinbolt, Engineering in Medicine and Biology Magazine, IEEE 28(3), 41 (2009).

    Google Scholar 

  59. D.A. Nordsletten, B. Yankama, R. Umeton, V. Ayyadurai, C. Dewey, Biomedical Engineering, IEEE Transactions on 58(12), 3508 (2011).

    Google Scholar 

  60. J. Zhou, I.F. Thorpe, S. Izvekov, G.A. Voth, Biophysical journal 92(12), 4289 (2007).

    Article  Google Scholar 

  61. S.C. Flores, J. Bernauer, S. Shin, R. Zhou, X. Huang, Briefings in bioinformatics 13(4), 395 (2012).

    Article  Google Scholar 

  62. S. Kmiecik, M. Jamroz, A. Kolinski, in Multiscale Approaches to Protein Modeling (Springer, 2011), pp. 281–293.

    Google Scholar 

  63. N. Bellomo, M. Delitala, Physics of Life Reviews 5(4), 183 (2008).

    Article  Google Scholar 

  64. P. Hunter, P. Nielsen, Physiology 20(5), 316 (2005).

    Article  Google Scholar 

  65. P.J. Hunter, E.J. Crampin, P.M. Nielsen, Briefings in bioinformatics 9(4), 333 (2008).

    Article  Google Scholar 

  66. H. De Jong, Journal of computational biology 9(1), 67 (2002).

    Article  Google Scholar 

  67. W.K. Liu, E. Karpov, S. Zhang, H. Park, Computer Methods in Applied Mechanics and Engineering 193(17), 1529 (2004).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express our sincere gratitude to J. Cliff Zhou for his early involvement in this work, and Dr. M.N. Rylander and her group for providing information regarding the 3D in vitro cell culture system. The funding from NSF/CREST program \(\sharp {0932339}\) is highly appreciated and acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusheng Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Feng, Y., Boukhris, S.J., Ranjan, R., Valencia, R.A. (2015). Biological Systems: Multiscale Modeling Based on Mixture Theory. In: De, S., Hwang, W., Kuhl, E. (eds) Multiscale Modeling in Biomechanics and Mechanobiology. Springer, London. https://doi.org/10.1007/978-1-4471-6599-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6599-6_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6598-9

  • Online ISBN: 978-1-4471-6599-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics