Skip to main content

An Introduction to EEG Source Analysis with an Illustration of a Study on Error-Related Potentials

  • Chapter
  • First Online:
Guide to Brain-Computer Music Interfacing

Abstract

Over the last twenty years, blind source separation (BSS) has become a fundamental signal processing tool in the study of human electroencephalography (EEG), other biological data, as well as in many other signal processing domains such as speech, images, geophysics, and wireless. This chapter introduces a short review of brain volume conduction theory, demonstrating that BSS modeling is grounded on current physiological knowledge. Then, it illustrates a general BSS scheme requiring the estimation of second-order statistics (SOS) only. A simple and efficient implementation based on the approximate joint diagonalization of covariance matrices (AJDC) is described. The method operates in the same way in the time or frequency domain (or both at the same time) and is capable of modeling explicitly physiological and experimental source of variations with remarkable flexibility. Finally, this chapter provides a specific example illustrating the analysis of a new experimental study on error-related potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such processes are called colored, in opposition to iid processes, which are called white.

  2. 2.

    This paper does not consider SOS but fourth-order statistics; however, the algorithms are based on approximate joint diagonalization of matrices which are the slices of the tensor of fourth-order cumulants and thus can be used for SOS matrices as well.

  3. 3.

    Two vectors are collinear if they are equal out of a scaling factor, that is, the energy profile is proportional.

References

  • Afsari B (2008) Sensitivity analysis for the problem of matrix joint diagonalization. SIAM J Matrix Ana Appl 30(3):1148–1171

    Article  MathSciNet  Google Scholar 

  • Aïssa-El-Bey A, Abed-Meraim K, Grenier Y, Hua Y (2008) A general framework for second order blind separation of stationary colored sources. Sig Process 88(9):2123–2137

    Article  MATH  Google Scholar 

  • Ans B, Hérault J, Jutten C (1985) Adaptive neural architectures: detection of primitives. In: Proceedings of COGNITIVA, pp 593–597

    Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159

    Article  Google Scholar 

  • Belouchrani A, Amin MG (1998) Blind source separation based on time-frequency signal representations. IEEE Trans Signal Process 46(11):2888–2897

    Article  Google Scholar 

  • Belouchrani A, Abed-Meraim K, Cardoso JF, Moulines E (1997) A blind source separation technique using second order statistics’. IEEE Trans Signal Process 45(2):434–444

    Article  Google Scholar 

  • Bloomfield P (2000) Fourier analysis of time series. Wiley, New York

    Book  MATH  Google Scholar 

  • Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest analysis using an SPM toolbox [abstract]. In: Presented at the 8th international conference on functional mapping of the human brain, 2–6 June 2002, Sendai, Japan. Available on CD-ROM in NeuroImage 16(2)

    Google Scholar 

  • Buzsaki G (2006) Rhythms of the Brain. Oxford University Press, London

    Google Scholar 

  • Cardoso J-F (1998) Blind signal separation: statistical principles. IEEE Proc 9(10):2009–2025

    Article  Google Scholar 

  • Cardoso JF, Souloumiac A (1993) Blind beamforming for non-Gaussian signals. IEE Proc-F (Radar Signal Process) 140(6):362–370

    Article  Google Scholar 

  • Chatel-Goldman J, Congedo M, Phlypo R (2013) Joint BSS as a natural analysis framework for EEG-hyperscanning (in press)

    Google Scholar 

  • Comon P (1994) Independent component analysis, a new concept? Sig Process 36(3):287–314

    Article  MATH  Google Scholar 

  • Comon P, Jutten C (2010) Handbook of Blind Source Separation: Independent component analysis and applications. Academic Press, London

    Google Scholar 

  • Congedo C, Gouy-Pailler C, Jutten C (2008) On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics. Clin Neurophysiol 119(12):2677–2686

    Article  Google Scholar 

  • Congedo M, John ER, De Ridder D, Prichep L (2010) Group independent component analysis of resting-state EEG in large normative samples. Int J Psychophysiol 78:89–99

    Article  Google Scholar 

  • Congedo M, Phlypo R, Chatel-Goldman J (2012) Orthogonal and non-orthogonal joint blind source separation in the least-squares sense. In: 20th European signal processing conference (EUSIPCO), 27–31 Aug, Bucharest, Romania, pp 1885–1889

    Google Scholar 

  • Congedo M, Phlypo R, Pham D-T (2011) Approximate joint singular value decomposition of an asymmetric rectangular matrix set. IEEE Trans Signal Process 59(1):415–424

    Article  MathSciNet  Google Scholar 

  • Darmois G (1953) Analyse générale des liaisons stochastiques. Rev Inst Inter Stat 21:2–8

    Article  MathSciNet  MATH  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  Google Scholar 

  • Falkenstein M, Hohnsbein J, Hoormann J (1991) Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol 78:447–455

    Article  Google Scholar 

  • Farquhar J, Hill NJ (2013) Interactions between pre-processing and classification methods for event-related-potential classification : best-practice guidelines for brain–computer interfacing. Neuroinformatics 11(2):175–192

    Article  Google Scholar 

  • Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113(5):702–712

    Article  Google Scholar 

  • Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error detection and compensation. Psychol Sci 4(Suppl 6):385–390

    Google Scholar 

  • Gehring WJ, Willoughby AR (2002) The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295(5563):2279–2282

    Article  Google Scholar 

  • Gentsch A, Ullsperger P, Ullsperger M (2009) Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement. Neuroimage 47(4):2023–2030

    Article  Google Scholar 

  • Gouy-Pailler C, Congedo M, Brunner C, Jutten C, Pfurtscheller G (2010) Nonstationary brain source separation for multiclass motor imagery. IEEE Trans Biomed Eng 57(2):469–478

    Article  Google Scholar 

  • Greenblatt RE, Ossadtchi A, Pflieger ME (2005) Local Linear Estimators for Bioelectromagnetic Inverse Problem. IEEE Trans Signal Process 53(9):3403–3412

    Google Scholar 

  • Grosse-Wentrup M, Buss M (2008) Multiclass common spatial patterns and information theoretic feature extraction. IEEE Trans Biomed Eng 55(8):1991–2000

    Article  Google Scholar 

  • Hérault J, Jutten C (1986) Space or time adaptive signal processing by neural network models. In: Proceedings of international conference neural netw computing, Snowbird (Utah), vol 151, pp 206–211

    Google Scholar 

  • Herrmann MJ, Römmler J, Ehlis AC, Heidrich A, Fallgatter AJ (2004) Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe). Cogn Brain Res 20(2):294–299

    Article  Google Scholar 

  • Holmes AP, Blair RC, Watson JDG, Ford I (1996) Non-parametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22

    Article  Google Scholar 

  • Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34(4):1600–1611

    Article  Google Scholar 

  • Jutten C, Hérault J (1991) Blind separation of sources, Part 1: an adaptive algorithm based on neuromimetic architecture. Signal Process 24(1):1–10

    Article  MATH  Google Scholar 

  • Kopřivová J, Congedo M, Horáček J, Praško J, Raszka M, Brunovský M, Kohútová B, Höschl C (2011) EEG source analysis in obsessive–compulsive disorder. Clin Neurophysiol 122(9):1735–1743

    Article  Google Scholar 

  • Lancaster JL, Woldor MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10(3):120–131

    Article  Google Scholar 

  • Lopes da Silva F (2005) Event related potentials: methodology and quantification. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications, and related fields, 5th edn. Lippincott Williams & Wilkins, New York, pp 991–1001

    Google Scholar 

  • Lopes da Silva F, Van Rotterdam A (2005) Biophysical aspects of EEG and magnetoencephalogram generation. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications, and related fields, 5th edn. Lippincott Williams & Wilkins, New York, pp 107–125

    Google Scholar 

  • Luu P, Tucker DM, Makeig S (2004) Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clin Neurophysiol 115(8):1821–1835

    Article  Google Scholar 

  • Matsuoka K, Ohya M, Kawamoto M (1995) A neural net for blind separation of nonstationary signals. Neural Netw 8(3):411–419

    Article  Google Scholar 

  • Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B et al (2001) A probabilistic atlas and reference system for the human brain: International consortium for brain mapping (icbm). Philos Trans R Soc Lond Ser B: Biol Sci 356(1412):1293–1322

    Google Scholar 

  • Miltner WHR, Braun CH, Coles MGH (1997) Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a generic neural system for error detection. J Cogn Neurosci 9(6):788–798

    Article  Google Scholar 

  • Molgedey L, Schuster HG (1994) Separation of a mixture of independent signals using time delayed correlations. Phys Rev Lett 72:3634–3636

    Article  Google Scholar 

  • Niedermeyer E (2005a) The normal EEG of the waking Adult. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications, and related fields, 5th edn. Lippincott Williams & Wilkins, New York, pp 167–191

    Google Scholar 

  • Niedermeyer E (2005b) Sleep and EEG. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications, and related fields, 5th edn. Lippincott Williams & Wilkins, New York, pp 193–207

    Google Scholar 

  • Nieuwenhuis S, Yeung N, Van Den Wildenberg W, Ridderinkhof KR (2003) Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn Affect Behav Neurosci 3(1):17–26

    Article  Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric field of the brain, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  • Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) Fieldtrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 1:ID156869

    Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Meth Find Exp Clin Pharma 24D:5–12

    Google Scholar 

  • Pham D-T (2002) Exploiting source non stationary and coloration in blind source separation. Digital Signal Process 1:151–154

    Google Scholar 

  • Pham D-T, Cardoso J-F (2001) Blind separation of instantaneous mixtures of non stationary sources. IEEE Trans Signal Process 49(9):1837–1848

    Article  MathSciNet  Google Scholar 

  • Pfurtscheller G (1981) Central beta rhythm during sensorimotor activities in man. Electroencephalogr Clin Neurophysiol 51(3):253–264

    Article  Google Scholar 

  • Pfurtscheller G, Lopes da Silva F (1999) Event-related eeg/meg synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  Google Scholar 

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11–22

    Article  Google Scholar 

  • Souloumiac A (1995) Blind source detection and separation using second order nonstationarity. In: Proceedings of ICASSP, pp 1912–1915

    Google Scholar 

  • Speckmann E-J, Elger CE (2005) Introduction to the neurophysiological basis of the EEG and DC potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications, and related fields. 5th edn. Lippincott Williams & Wilkins, New York, pp 17–29

    Google Scholar 

  • Steinhauser M, Kiesel A (2011) Performance monitoring and the causal attribution of errors. Cogn Affect Behav Neurosci 1–12

    Google Scholar 

  • Steriade M (2005) Cellular substrates of brain rhythms. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications, and related fields. 5th edn. Lippincott Williams & Wilkins, New York, pp 31–83

    Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Thieme

    Google Scholar 

  • Tichavsky T, Yeredor A (2009) Fast approximate joint diagonalization incorporating weight matrices. IEEE Trans Signal Process 57(3):878–889

    Article  MathSciNet  Google Scholar 

  • Tong L, Inouye Y, Liu RW (1993) Waveform-preserving blind estimation of multiple independent sources. IEEE Trans Signal Process 41(7):2461–2470

    Article  MATH  Google Scholar 

  • Trujillo LT, Allen JJB (2007) Theta EEG dynamics of the error-related negativity. Clin Neurophysiol 118(3):645–668

    Article  Google Scholar 

  • Van Der Loo E, Congedo M, Plazier M, Van De Heyning P, De Ridder D (2007) Correlation between independent components of scalp EEG and intra-cranial EEG (iEEG) time series. Int J Bioelectromagn 9(4):270–275

    Google Scholar 

  • Yeredor A (2010) Second order methods based on color. In: Comon P, Jutten C (eds) Handbook of blind source separation. Independent component analysis and application. Academic Press, Paris

    Google Scholar 

  • White D, Congedo M, Ciorciari J, Silberstein R (2012) Brain oscillatory activity during spatial navigation: theta and gamma activity link medial temporal and parietal regions. J Cogn Neurosci 24(3):686–697

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Congedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Congedo, M., Rousseau, S., Jutten, C. (2014). An Introduction to EEG Source Analysis with an Illustration of a Study on Error-Related Potentials. In: Miranda, E., Castet, J. (eds) Guide to Brain-Computer Music Interfacing. Springer, London. https://doi.org/10.1007/978-1-4471-6584-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6584-2_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6583-5

  • Online ISBN: 978-1-4471-6584-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics