Skip to main content

The Role of Technology and Medical Devices in Enhancing Pediatric Cardiac Critical Care Outcomes

  • Chapter
  • First Online:
Pediatric and Congenital Cardiac Care

Abstract

Medical technologies of all types are ubiquitous in pediatric cardiac critical care. Despite the widespread use of technology in the PICU there is a paucity of evidence directly linking these technologies to improved outcomes. This chapter first places technology in the larger context of healthcare systems. It further explores the evidence for technologies ranging from electrocardiograms to mechanical support and electronic health records. Additional attention is given to special topics of the impact of alarms and alerts, as well as the role of technology in human cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carayon P, Hundt AS, Karsh B-T, Gurses AP, Alvarado CJ, Smith M, Brennan PF. Work system design for patient safety: the SEIPS model. Qual Saf Health Care. 2006;15(Suppl I):i50–8.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Jevon P. An introduction to electrocardiogram monitoring. Nurs Crit Care. 2010;15(1):34–8.

    Article  PubMed  Google Scholar 

  3. Halley GC, Tibby S. Hemodynamic monitoring. In: Nichols DG, Rogers MC, editors. Rogers’ textbook of pediatric intensive care. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 1039–63.

    Google Scholar 

  4. Sivajaran VB, Bohn D. Monitoring of standard hemodynamic parameters: heart rate, systemic blood pressure, atrial pressure, pulse oximetry, and end-tidal CO2. Pediatr Crit Care Med. 2011;12(4):S2–11.

    Article  Google Scholar 

  5. Drew BJ. Practice standards for electrocardiographic monitoring in hospital settings: an American Heart Association scientific statement from the councils on cardiovascular nursing, clinical cardiology, and cardiovascular disease in the young. Circulation. 2004;110(17):2721–46.

    Article  PubMed  Google Scholar 

  6. Kugel H, Bremer C, Puschel M, Rischbach R, Lenzen H, Tombach B, et al. Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur Radiol. 2003;13:690–4.

    PubMed  Google Scholar 

  7. ECRI Institute. Risk of electric shock from patient monitoring cables and electrode wire leads. Hazard Health Devices. 1993;22(5–6):301–2. Available at: http://www.mdsr.ecri.org/summary/detail.aspx?doc_id=8161. Accessed 2 Aug 2013.

    Google Scholar 

  8. Miller GA. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev. 1956;63:81–97.

    Article  CAS  PubMed  Google Scholar 

  9. Florance V, Marchionini G. Information processing in the context of medical care. SIGIR ‘95 Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval. New York: Springer; 1995. p. 158–63.

    Google Scholar 

  10. Costello JM, Clapper TC, Wypij D. Minimizing complications associated with percutaneous central venous catheter placement in children: recent advances. Pediatr Crit Care Med. 2013;14(3):273–83.

    Article  PubMed  Google Scholar 

  11. Karapinar B, Cura A. Complications of central venous catheterization in critically ill children. Pediatr Int. 2007;49(5):593–9.

    Article  PubMed  Google Scholar 

  12. Walsh BK, Crotwell DN, Restrepo RD. Capnography/capnometry during mechanical ventilation: 2011. Respir Care. 2011;56(4):503–9.

    Article  PubMed  Google Scholar 

  13. Oridion Medical. Standards mandating capnography monitoring. 2011. p. 1–16. Available at: www.multileadmedics.com/ www.multileadmedics.com/Capnography_files/capnogrpahy%20standards-final.pdf. Accessed 15 July 2013.

  14. Whitaker DK. Time for capnography everywhere. Anaesthesia. 2011;66:539–49.

    Article  Google Scholar 

  15. Ghanayem NS, Wernovsky G, Hoffman GM. Near-infrared spectroscopy as a hemodynamic monitor in critical illness. Pediatr Crit Care Med. 2011;12(4 Suppl):S27–32.

    Article  PubMed  Google Scholar 

  16. Austin 3rd EH, Edmonds Jr HL, Auden SM, Seremet V, Niznik G, Sehic A, Sowell MK, Cheppo CD, Corlett KM. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg. 1997;114(5):707–15.

    Article  PubMed  Google Scholar 

  17. Hoffman GM, Ghanayem NS, Mussatto KS, Berens RJ, Tweddell JS. Postoperative two-site NIRS predicts complications and mortality after stage 1 palliation of HLHS. Anesthesiology. 2007:A234. Available at: http://www.asaabstracts.com/strands/asaabstracts/abstract.htm;jsessionid=CCBCF7BE71A4FCAFBE686CC53266F3F5?year=2007&index=16&absnum=1585. Accessed 1 Aug 2013.

  18. Drayna PC, Abramo TJ, Estrada C. Near-infrared spectroscopy in the critical setting. Pediatr Emerg Care. 2011;27(5):432–9.

    Article  PubMed  Google Scholar 

  19. Bell MJ, Chang T. Central nervous system monitoring. In: Wheeler DS, Wong HR, Shanley TP, editors. Pediatric critical care medicine: basic science and clinical evidence. London: Springer; 2007. p. 865–71.

    Google Scholar 

  20. Grindstaff RJ, Tobias JD. Applications of bispectral index monitoring in the pediatric intensive care unit. J Intensive Care Med. 2004;19(2):111–6.

    Article  PubMed  Google Scholar 

  21. Levine DA, Platt SL. Novel monitoring techniques for use with procedural sedation. Curr Opin Pediatr. 2005;17(3):351–4.

    Article  PubMed  Google Scholar 

  22. Berkenbosch JW, Fichter CR, Tobias JD. The correlation of the bispectral index monitor with clinical sedation scores during mechanical ventilation in the pediatric intensive care unit. Anesth Analg. 2002;94(3):506–11.

    Article  PubMed  Google Scholar 

  23. Klopman MA, Sebel PS. Cost-effectiveness of bispectral index monitoring. Curr Opin Anaesthesiol. 2011;24(2):177–81.

    Article  PubMed  Google Scholar 

  24. Bronicki R, Chang A. Management of the postoperative pediatric cardiac surgical patient. Crit Care Med. 2011;39(8):1974–84.

    Article  PubMed  Google Scholar 

  25. Kulik TJ, Moler FW, Palmisano JM, Custer JR, Mosca RS, Bove EL, Bartlett RH. Outcome-associated factors in pediatric patients treated with extracorporeal membrane oxygenator after surgery. Circulation. 1996;94(9 Suppl):II63–8.

    CAS  PubMed  Google Scholar 

  26. Duncan BW, Ibrahim AE, Hraska V, et al. Use of rapid deployment extracorporeal membrane oxygenation for the resuscitation of pediatric patients with heart disease after cardiac arrest. J Thorac Cardiovasc Surg. 1998;116(2):305–11.

    Article  CAS  PubMed  Google Scholar 

  27. Raymond TT, Cunnyngham CB, Thompson MT, Thomas JA, Dalton HJ, Nadkarni VM. Outcomes among neonates, infants, and children after extracorporeal cardiopulmonary resuscitation for refractory in hospital pediatric cardiac arrest: a report from the national registry of cardiopulmonary resuscitation. Pediatr Crit Care Med. 2010;11(3):362–71.

    PubMed  Google Scholar 

  28. Mahle WT, Forbess JM, Kirshbom PM, Cuadrado AR, Jimsic JM, Kantner KR. Cost-utility analysis of salvage cardiac extracorporeal membrane oxygenation in children. J Thorac Cardiovasc Surg. 2005;129(5):1084–90.

    Article  PubMed  Google Scholar 

  29. DeBerry BB, Lynch J, Chung DH, Zwischenberger JN. Emergencies during ECLS and their management. In: Van Meurs K, Lally KP, Peek G, Zwischenberger JN, editors. ECMO: extracorporeal cardiopulmonary support in critical care. 3rd ed. Ann Arbor: Extracorporeal Life Support Organization; 2005. p. 133–56.

    Google Scholar 

  30. O’Neill J, Schutze G, Heulitt M, et al. Nosocomial infections during extracorporeal membrane oxygenation. Intensive Care Med. 2001;27:1247–53.

    Article  PubMed  Google Scholar 

  31. Thiagarajan RR, Laussen PC, Rycus PT, Bartlett RH, Bratton SL. Extracorporeal membrane oxygenation to aid cardiopulmonary resuscitation in infants and children. Circulation. 2007;116:1693–700.

    Article  PubMed  Google Scholar 

  32. Thiagarajan RR, Barrett CS. ECMO-indications and outcomes. Society of Critical Care Medicine Critical Connections. 2011. Available at: http://www.sccm.org/Communications/Critical-Connections/Archives/Pages/ECMO---Indications-and-Outcomes.aspx. Accessed 5 Aug 2013.

  33. Guerguerian AM, Ogino MT, Dalton H, SHekerdemian LS. Setup and maintenance of extracorporeal life support programs. Pediatr Crit Care Med. 2013;14(5 Suppl):S84–93.

    Article  PubMed  Google Scholar 

  34. Meyer MT, Braby J, Scanlon MC. Using failure mode and effects analysis to design a mobile extracorporeal membrane oxygenation team. Air Med J. 2011;30(4):201–7.

    Article  PubMed  Google Scholar 

  35. Graciano AL, Meliones JN, Kocis KC. Treatment of heart failure in infants and children: mechanical support. In: Nichols DG, Rogers MC, editors. Rogers’ textbook of pediatric intensive care. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 1109–16.

    Google Scholar 

  36. Kamdar F, John R, Eckman P, Colvin-Adams M, Shumway S, Liao K. Postcardiac transplant survival in the current era in patients receiving continuous-flow left ventricular assist devices. Cardiothorac Transplant. 2013;145(2):575–81.

    Google Scholar 

  37. Reinhartz O, Keith F, El-Banayosy A. Multicenter experience with the thoratec ventricular assist device in children and adolescents. J Heart Lung Transplant. 2001;20(4):439–48.

    Article  CAS  PubMed  Google Scholar 

  38. Reinhartz O, Hill J, Al-Khaldi A. Thoratec ventricular assist devices in pediatric cardiac patients: update on clinical results. ASAIO J. 2005;51(5):501–3.

    Article  PubMed  Google Scholar 

  39. Ibrahim A, Duncan B, Blume E. Long-term follow-up of pediatric cardiac patients requiring mechanical circulatory support. Ann Thorac Surg. 2000;69:186–92.

    Article  CAS  PubMed  Google Scholar 

  40. John R, Lee S, Eckman P, Liao K. Right ventricular failure – a continuing problem in patients with left ventricular assist device support. J Cardiovasc Transl Res. 2010;3:604–11.

    Article  PubMed  Google Scholar 

  41. Kormos R, Moazami N, Milano C, Massey T, Miller L, John R, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24.

    Article  PubMed  Google Scholar 

  42. Farrar D. Ventricular interactions during mechanical circulatory support. Semin Thorac Cardiovasc Surg. 1994;6:163–8.

    CAS  PubMed  Google Scholar 

  43. Fitzpatrick J, Howell E, O’Hara M, Laporte C, Kozin E, McCormick R, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg. 2009;137(4):971–7.

    Article  PubMed Central  PubMed  Google Scholar 

  44. O’Connor M, Ravishankar C, Kaufman B, Paridon S, Hanna B, Gaynor J, et al. Ventricular assist device-associated anti-human leukocyte antigen antibody sensitization in pediatric patients bridged to heart transplantation. J Heart Lung Transplant. 2010;29(1):109–16.

    Article  PubMed  Google Scholar 

  45. Grutter G, Amodeo A, Brancaccio G, Parisi F. Panel reactive antibody monitoring in pediatric patients undergoing ventricle assist device as bridge to heart transplantation. Artif Organs. 2013;37(5):435–8.

    Article  PubMed  Google Scholar 

  46. Feingold B, Bowman P, Zeevi A, Girnita A, Quivers E, Miller S, et al. Survival in allosensitized children after listing for cardiac transplantation. J Heart Lung Transplant. 2007;26(6):565–71.

    Article  PubMed  Google Scholar 

  47. Abramson EL, Kaushal R. Computerized provider order entry and patient safety. Pediatr Clin North Am. 2012;59:1247–55.

    Article  PubMed  Google Scholar 

  48. Scanlon MC. The role of “smart” infusion pumps in patient safety. Pediatr Clin North Am. 2012;59(6):1257–67.

    Article  PubMed  Google Scholar 

  49. Karsh BT, Wetterneck TB, Holden RJ, Rivera-Rodriguez J, Faye H, Scanlon MC, Carayon P, Alper SJ. Bar coding in medication administration. In: Yih Y, editor. Handbook of healthcare delivery systems. Boca Raton: CRC Press; 2010.

    Google Scholar 

  50. Kaushal R, Shojania KG, Bates DW. Effects of computerized physician order entry and clinical decision support systems on medication safety- a systematic review. Arch Intern Med. 2003;163:1409–16.

    Article  PubMed  Google Scholar 

  51. Leapfrog Group. Factsheet: computerized physician order entry. 2012. Available at: https://leapfroghospitalsurvey.org/web/wp–content/uploads/FScpoe.pdf. Accessed 27 Aug 2013.

  52. Karsh BT, Weinger MB, Abbott PA, Wearls RL. Health information technology: fallacies and sober realities. J Am Med Inform Assoc. 2010;17:617–23.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Holden RJ, Karsh B. The technology acceptance model: its past and its future in health care. J Biomed Inform. 2010;43(1):159–72.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Holden RJ, Brown RL, Scanlon MC, Karsh BT. Modeling nurses’ acceptance of bar coded medication administration technology at a pediatric hospital. J Am Med Inform Assoc. 2012;19(6):1050–8. doi: 10.1136/amiajnl-2011-000754. Epub 2012 Jun 3. PMID:22661559.

    Google Scholar 

  55. Karsh BT. Beyond usability: designing effective technology implementation systems to promote patient safety. Qual Saf Health Care. 2004;13:388–94.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Scanlon MC, Karsh BT. The value of human factors to medication and patient safety in the ICU. Crit Care Med. 2010;38(6 Suppl):S90–6.

    Article  PubMed  Google Scholar 

  57. Russ AL, Fairbanks RJ, Karsh BT, Miletello LG, Saleem JJ, Wears RL. The science of human factors: separating fact from fiction. Qual Saf Health Care. 2013;00:1–7.

    Google Scholar 

  58. Wolpe J. Psychotherapy by reciprocal inhibition. Stanford: Stanford University Press; 1958.

    Google Scholar 

  59. The Joint Commission. Medical device alarm safety in hospitals. Jt Comm Sentinel Event Alert. 2013;(50):1–2. Availble at http://www.jointcommission.org/assets/1/18/sea_50_alarms_4_5_13_final1.pdf.

  60. Kowalczyk L. Groups target alarm fatigue at hospitals. Boston Globe, 18 Apr 2011.

    Google Scholar 

  61. Van der Sijs H, Aarts J, Vulto A, et al. Overriding of drug safety alerts in computerized order entry. J Am Med Inform Assoc. 2006;13:138–47.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Solet JM, Barach PR. Managing alarm fatigue in cardiac care. Prog Pediatr Cardiol. 2012;33:85–90.

    Article  Google Scholar 

  63. Taylor L, Tamblyn R. Reasons for physician non-adherence to electronic drug alerts. Stud Health Technol Inform. 2004;107:1101–5.

    PubMed  Google Scholar 

  64. Horsky J, Zhang J, Patel VL. To err is not entirely human: complex technology and user cognition. J Biomed Inform. 2005;38:264–6.

    Article  PubMed  Google Scholar 

  65. Karsh B, Holden RJ, Alper SJ, Or CKL. A human factors engineering paradigm for patient safety-designing to support the performance of the health care professional. Qual Saf Health Care. 2006;15:i59–65.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Lawler EK, Hedge A, Pavlovic-Veselinovic S. Cognitive ergonomics, soci-technical systems, and the impact of healthcare information technologies. Int J Ind Ergon. 2011;41:336–44.

    Article  Google Scholar 

  67. Hasbro Games. GI Joe public service announcements. Available at: http://www.gametrailers.com/videos/s7x099/all-gi-joe-psas. Accessed 15 Aug 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. Scanlon MD, CPPS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

King, A.L., Baloglu, O., Scanlon, M.C. (2015). The Role of Technology and Medical Devices in Enhancing Pediatric Cardiac Critical Care Outcomes. In: Barach, P., Jacobs, J., Lipshultz, S., Laussen, P. (eds) Pediatric and Congenital Cardiac Care. Springer, London. https://doi.org/10.1007/978-1-4471-6566-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6566-8_29

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6565-1

  • Online ISBN: 978-1-4471-6566-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics