Skip to main content

Optimizing Electrodes for Lithium-ion Cells

  • Chapter
  • First Online:
Lithium-ion Battery Materials and Engineering

Abstract

Selection of active electrode materials is only the first step in the cell design and manufacturing process. In order to achieve the best cell performance, the “non-active” components need to be carefully selected both qualitatively and quantitatively. Especially in high-end applications, the electrode formulation optimization process is nontrivial and seriously impacts the cell’s performance. Achieving the high performance limits, such as extremely high power, very high temperatures, or very long life, require thoughtful and deliberate approach to electrode formulation optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy TB, Linden D, eds (2010) Linden’s handbook of batteries 4th edition. McGraw-Hill, New York

    Google Scholar 

  2. Yamada Y et al (1974) Characteristics of meso-carbon microbeads separated from pitch. Carbon 12:307-319. doi:10.1016/0008-6223(74)90072-4

  3. Jarvis CR et al (2001) Use of grafted PVdF-based polymers in lithium batteries. J Power Sources 97:664-666. doi:10.1016/S0378-7753(01)00696-6

  4. Wu HC, Wu HC, Lee E, Wu NL (2010) High-temperature carbon-coated aluminum current collector for enhanced power performance of LiFePO4 electrode of Li-ion batteries. Electrochem Commun 12:488-491. doi:10.1016/j.elecom.2010.01.028

  5. Gulbinska M et al (2011) Comprehensive improvements in Li-ion batteries for demanding applications. J Power Sources 196:2899-2904. doi:10.1016/j.jpowsour.2010.10.087

  6. Dupre N et al (2010) Aging of the LiFePO4 positive electrode interface in electrolyte. J Power Sources 195:7415-7425. doi:10.1016/j.jpowsour.2010.05.042

  7. Lee HH et al (2005) The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries. J Appl Electrochem 35:615-623. doi:10.1007/s10800-005-2700-x

  8. Xu K et al (2005) LiBOB: Is it an alternative salt for lithium ion chemistry? J Power Sources 146:79-85. doi:10.1016/j.jpowsour.2005.03.153

  9. Zhang SS (2006) An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem Commun 8:1423-1428. doi:10.1016/j.elecom.2006.06.016

  10. Li W et al (2006) Lithium-ion batteries: Thermal reactions of electrolyte with the surface of metal oxide cathode particles. J Electrochem Soc 153:A1617-A1625. doi:10.1149/1.2210588

  11. McNaught AD and Wilkinson A (1997) IUPAC Compendium of Chemical Terminology, 2nd edition (the “Gold Book”). Blackwell Scientific Publications, Oxford. http://goldbook.iupac.org. doi:10.1351/goldbook. Accessed May 2013

  12. Gu GY, Laura R, Abraham KM (1999) Conductivity-temperature behavior of organic electrolytes Electrochem Solid St 2:486-489. doi:10.1149/1.1390879

  13. Gu GY et al (2000) 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries. Electrochim Acta 45:3127-3139. doi:10.1016/S0013-4686(00)00394-7

  14. Blomgren GE (1999) Physical and chemical properties of non-aqueous solutions. In: Non-aqueous Electrochemistry. Aurbach D (ed) Marcel Dekker, New York - Basel

    Google Scholar 

  15. Ravdel B, Abraham KM, Gitzendanner RL, Marsh C (2003) Temperature dependence of the conductivity of lithium-ion battery electrolytes. In: Proceedings of the Symposium on Batteries and Supercapacitors. Nazri GA, Takeuchi E, Koetz R, Scrosati B (ed) The Electrochemical Society

    Google Scholar 

  16. Himmelblau DM (1972) Applied Nonlinear Programming, Mc Graw Hill, New York

    Google Scholar 

  17. Duan H et al (2008) Fabrication and characterization of Fe3O4-based Cu nanostructured electrode for Li-ion battery. J Power Sources 185:512–518. doi:10.1016/j.jpowsour.2008.06.07

  18. Arico AS et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nature Mater 4:366-377. doi:10.1038/nmat1368

  19. Sides CR et al (2002) Nanoscale materials for lithium-ion batteries MRS Bull 26:604-608. doi:10.1557/mrs2002.195

  20. Malik R, Burch D, Bazant, M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10:4123-4127. doi:10.1021/nl1023595

  21. Bruce PG (1997) Solid-state chemistry of lithium power sources. Chem Commun 19:1817-1824

    Google Scholar 

  22. Abraham KM (2009) The 2009 Fall ECS meeting, Vienna, Austria, Abstract No. 692

    Google Scholar 

  23. Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56-72. doi:10.1039/c0ee00281j

  24. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592. doi:10.1039/b502142c

  25. Malik R, Burch D, Bazant, M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10:4123-4127. doi:10.1021/nl1023595

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Gnanaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Santee, S.G., Ravdel, B., Gulbinska, M.K., Gnanaraj, J.S., DiCarlo, J.F. (2014). Optimizing Electrodes for Lithium-ion Cells. In: Gulbinska, M. (eds) Lithium-ion Battery Materials and Engineering. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6548-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6548-4_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6547-7

  • Online ISBN: 978-1-4471-6548-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics