Skip to main content

Lithium-ion Cell Materials in Practice

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Modern lithium-ion cells are subject to a wide range of performance requirements, driven by the needs of their end users. Since lithium-ion cells are being used to power devices ranging from household electronics, through power tools to automobiles and the application types vary from commercial to military power sources, there is no universal user profile. The cells are usually classified either as “high energy” or “high power,” although the intermediate variants exist. For each distinct cell design option, appropriate selection of cell materials that are “best for the application” is made and, from this point, systematic process of optimization of materials’ performance in a cell begins. From the functional standpoint, lithium-ion electrode materials are divided into “active materials” that are capable of reversibly intercalating lithium ions into their structure, “conductive diluents” that assist in electron conduction within the electrode, current collecting foils, as well as binders that assure adhesion to current collectors and cohesion within the electrode. Electrolyte solutions and porous separators are other cell materials that must be properly selected to match the cell design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Originally, the term intercalation was reserved only for the layered materials’ host structures; nowadays this term can be seen applied to other types of structures as well (e.g., spinel-structured materials). The term also applies to ions other than Li+ (e.g., Mg2+).

References

  1. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301. doi:10.1021/cr020731c

  2. Levasseur S, Menetrier M, Suard E, Delmas C (2000) Evidence for structural defects in non-stoichiometric HT-LiCoO2: electrochemical, electronic properties and Li-7 NMR studies. Solid State Ionics 128:11–24. doi:10.1016/S0167-2738(99)00335-5

  3. Reimers JN, Dahn JR (1992) Electrochemical and insitu X-ray-diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139:2091–2097. doi:10.1149/1.2221184

  4. Huggins RA (2009) Advanced batteries: materials science aspects. Springer, New York

    Google Scholar 

  5. Yamahira T, Kato H, Anzai M (1991) US Patent 5,053,297

    Google Scholar 

  6. Goodenough JB, Mizushima K (1981) US Patent 4,302,518, (1982) US Patent 4,357,215

    Google Scholar 

  7. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x≤1): A new cathode material for batteries of high energy density. Mater Res Bull 15:783–789. doi:10.1016/0025-5408(80)90012-4

  8. Lu CH, Yeh PY (2002) Microstructural development and electrochemical characteristics of lithium cobalt oxide powders prepared by the water-in-oil emulsion process. J Eur Ceram Soc 22:673–679. doi:10.1016/S0955-2219(01)00366-1

  9. MacNeil DD, Dahn JR (2001) The reaction of charged cathodes with nonaqueous solvents and electrolytes - I. Li0.5CoO2. J Electrochem Soc 148:A1205–A1210. doi:10.1149/1.1407245

  10. Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106. doi:10.1016/S0378-7753(01)00887-4

  11. Chen Z, Ellenwood R (2010) US Patent Application US20100176352

    Google Scholar 

  12. B. Scrosati (2000) Recent advances in lithium ion battery materials. Electrochim Acta 45:2461–2466. doi:10.1016/S0013-4686(00)00333-9

  13. http://www.iucr.org/education/pamphlets. Accessed 1 March 2013

  14. Pecharsky VK, Zavalij PY (2005) Fundamentals of powder diffraction and structural characterization of materials. Springer, New York

    Google Scholar 

  15. Cho J, Kim YJ, Kim JT, Park B (2001) Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew Chem Int Ed 40:3367-3369. doi:10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A

  16. Wang ZX et al (2002) Electrochemical evaluation and structural characterization of commercial LiCoO2 surfaces modified with MgO for lithium-ion batteries. J Electrochem Soc 149:A466–A471. doi:10.1149/1.1456919

  17. Kim Y, Kim D, Kang S (2011) Experimental and first-principles thermodynamic study of the formation and effects of vacancies in layered lithium nickel cobalt oxides. Chem Mater 23:5388–5397. doi:10.1021/cm202415x

  18. Kim JM, Chung HT (2004) The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Electrochim Acta 49:937–944. doi:10.1016/j.electacta.2003.10.005

  19. Li DC et al (2004) Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2. J Power Sources 132:150–155. doi:10.1016/j.jpowsour.2004.01.016

  20. Chen YH, Wang CW, Zhang X, Sastry AM (2010) Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials. J Power Sources 195:2851–2862. doi:10.1016/j.jpowsour.2009.11.044

  21. Dahbi M, Saadoune I, Gustafsson T, Edström K (2011) Effect of manganese on the structural and thermal stability of Li0.3Ni0.7-yCo0.3-yMn2yO2 electrode materials (y = 0 and 0.05). Solid State Ionics 203:37–41. doi:10.1016/j.ssi.2011.09.022

  22. Feng J et al (2012) Electrochemical property of LiMn2O4 in overdischarged conditions. Funct Mater Lett 5:1250028. doi:10.1142/S1793604712500282

  23. Padhi AK, Nanjundaswamy KS, Goodenough JS (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 144:1188–1194. doi:10.1149/1.1837571

  24. Reddy TB, Linden D, eds (2010) Linden’s handbook of batteries 4th edition. McGraw-Hill, New York

    Google Scholar 

  25. Li G, Yang Z, Yang W (2008) Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries. J Power Sources 183:741–748. doi:10.1016/j.jpowsour.2008.05.047

  26. Xu F et al (2012) Failure Investigation of LiFePO4 cells under overcharge conditions. J Electrochem Soc 159:A678–A687. doi:10.1149/2.024206jes

  27. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229. doi:10.1149/1.1348257

  28. Ravet N et al Abs. 127, The Electrochemical Society and the Electrochemical Society of Japan Meeting Abstracts, vol. 99–2, Honolulu, HI, 17–22 October 1999

    Google Scholar 

  29. Tarascon JM et al (2010) Hunting for better Li-based electrode materials via low temperature inorganic synthesis. Chem Mater 22:724–739. doi:10.1021/cm9030478

  30. Croce F et al (2002) A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid-State Lett 5:A47–A50. doi:10.1149/1.1449302

  31. Rho YH, Nazar LF, Perry L, Ryan D (2007) Surface chemistry of LiFePO4 studied by Mossbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties. J Electrochem Soc 154:A283–A289. doi:10.1149/1.2433539

  32. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128. doi:10.1038/nmat732

  33. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152. doi:10.1038/nmat1063

  34. Beguin F, Frackowiak E, eds (2009) Carbons for Electrochemical Energy Storage and Conversion Systems 1st edition. CRC Press, Boca Raton

    Google Scholar 

  35. Ridgeway P et al (2008) Effect of vinylene carbonate on graphite anode cycling efficiency. Electrochem Soc Trans 13:1–7

    Google Scholar 

  36. Zaghib K et al, Low-cost graphite and olivine-based materials for Li-ion batteries. BATT Review Meeting. Washington, DC February 25–28 2008

    Google Scholar 

  37. Barsukov IV et al, eds (2006) New Carbon Based Materials for Electrochemical Energy Storage Systems. Springer NATO Science Series. Dordrecht, Netherlands

    Google Scholar 

  38. Hirota N, Itabashi T, Maki S (2011) US Patent Application, 20110159360

    Google Scholar 

  39. Yoo M, Frank CW, Mori S, Yamaguchi S (2004) Interaction of poly(vinylidene fluoride) with graphite particles. 2. Effect of solvent evaporation kinetics and chemical properties of PVDF on the surface morphology of a composite film and its relation to electrochemical performance. Chem Mater 16:1945–1953. doi:10.1021/cm0304593

  40. Amin-Sanayei R, Heinze R, NASA Aerospace Battery Workshop Presentation. Huntsville, AL 2009

    Google Scholar 

  41. Zheng H et al (2012) Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode. J Phys Chem C 116:4875–4882. doi:10.1021/jp208428w

  42. Zheng H et al (2010) Cathode performance as a function of inactive material and void fractions. J Electrochem Soc 157:A1060–A1066. doi:10.1149/1.3459878

  43. Spahr ME et al (2011) Development of carbon conductive additives for advanced lithium ion batteries. J Power Sources 196:3404–3413. doi:10.1016/j.jpowsour.2010.07.002

  44. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417. doi:10.1021/cr030203g

  45. Material Safety Data Sheet (MSDS) for EMC (CAS Number 623-53-0, 99 %), Sigma-Aldrich

    Google Scholar 

  46. Zinigrad E et al Abs. 245, The 210th Electrochemical Society Meeting Abstracts, Cancun, Mexico, October 29-November 3 2006

    Google Scholar 

  47. Lex-Balducci A et al (2010) Lithium borates for lithium-ion battery electrolytes. Electrochem Soc Trans 25:13–17

    Google Scholar 

  48. Zinigrad E et al (2007) On the thermal behavior of Li bis(oxalato)borate LiBOB. Thermochim Acta 457:64–69. doi:10.1016/j.tca.2007.03.001

  49. Smart MC et al (2002) Performance characteristics of lithium ion cells at low temperatures. IEEE Trans Aerosp Electron Syst Mag 17:16-20. doi:10.1109/MAES.2002.1145732

  50. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364. doi:10.1016/j.jpowsour.2006.10.065

  51. Test method developed under auspices of the Technical Association of the Pulp and Paper Industry

    Google Scholar 

  52. American Society for Testing and Materials (ASTM)

    Google Scholar 

  53. Jeong HS, Hong SC, Lee SY (2010) Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J Membr Sci 364:177–182. doi:10.1016/j.memsci.2010.08.012

  54. Johnson CS et al (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3∙(1-x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x≤0.7). Chem Mater 20:6095–6106. doi: 10.1021/cm801245r

  55. Sony news release. http://www.sony.net/SonyInfo/News/Press/200502/05-006E/index.html. Accessed 29 April 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata K. Gulbinska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Gulbinska, M.K. (2014). Lithium-ion Cell Materials in Practice. In: Gulbinska, M. (eds) Lithium-ion Battery Materials and Engineering. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6548-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6548-4_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6547-7

  • Online ISBN: 978-1-4471-6548-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics