Skip to main content

Identity of Human Endometrial Tissue: Potent Source of Stem Cells

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

The uterus is by far the largest female organ of the body, playing an integral role in the reproductive life of every woman. It plays a pivotal role in implantation and in absence of pregnancy, menstruation. The innermost layer of the uterus is known as tunica mucosa, popularly termed as endometrium, opposed to the outer perimetrium and median myometrium. The uterus is the only organ whose lining is almost entirely expelled and reconstructed periodically, both phenomena taking place at each ovarian cycle. With the purpose of facilitating the periodic elimination of the endometrium that undergoes regression, shrinkage, and necrosis at end of each cycle, the uterus also exhibits the unique peculiarity of physiological bleeding. The endometrial histophysiology is entirely controlled by the ovarian hormones along the cycle. Of all tissues of the human body, the endometrium is the one that, throughout the ovarian cycle, most accurately reflects the levels of estrogen and progesterone. Estradiol, produced by the ovaries on approximately day 4 or 5 of the cycle, induces growth and proliferation of the endometrium. The levels of estrogen are normally elevated during the proliferative phase of the menstrual cycle as it serves to promote proliferation of the luminal and glandular epithelial cells associated with the thickening of the endometrial lining as well as vascularization. The cessation of endometrial growth occurs before estradiol levels reach their peak and prior to the onset of progesterone production, thereby indicating that nonsteroidal factors limit the growth of endometrium. Progesterone is responsible for the secretory phase of the ovulatory cycle, and its action upon the endometrium serves two purposes. The first can be regarded as “medical.” It greatly reduces the proliferative activity of the endometrial glands, thereby preventing the appearance of endometrial hyperplasic alterations. The second is essentially “reproductive,” that is vital to create an ideal condition in the endometrium for the implantation and development of the egg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bromer JG, Aldad TS, Taylor HS. Defining the proliferative phase endometrial defect. Fertil Steril. 2009;91(3):698–704.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Suzuki T, Sasano H, Kimura N, et al. Immunohistochemical distribution of progesterone, androgen and oestrogen receptors in the human ovary during the menstrual cycle: relationship to expression of steroidogenic enzymes. Hum Reprod. 1994;9:1589–95.

    CAS  PubMed  Google Scholar 

  3. Al-Asmakh M. Reproductive function of progesterone. Middle East Fertil Soc J. 2007;12(3):147.

    Google Scholar 

  4. Swijnenburg R-J, Tanaka M, Vogel H, et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation. 2005;112:166–72.

    Google Scholar 

  5. Casalbore P, Budoni M, Ricci-Vitiani L, et al. Tumorigenic potential of olfactory bulb-derived human adult neural stem cells associates with activation of TERT and NOTCH1. PLoS One. 2009;4:e4434.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kishi Y, Tanaka Y, Shibata H, et al. Variation in the incidence of teratomas after the transplantation of nonhuman primate ES cells into immunodeficient mice. Cell Transplant. 2008;17:1095–102.

    Article  PubMed  Google Scholar 

  7. FriedhelmKuethe BM, Richartz CK, et al. Autologous intracoronary mononuclear bone marrow cell transplantation in chronic ischemic cardiomyopathy in humans. Int J Cardiol. 2005;100:485–91.

    Article  Google Scholar 

  8. Kumar AA, Narayanan R, Arul K, et al. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant. 2009;7:241–8.

    PubMed  Google Scholar 

  9. Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92:692–9.

    Article  CAS  PubMed  Google Scholar 

  10. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  CAS  PubMed  Google Scholar 

  11. De Ugarte DA, Alfonso Z, Zuk PA, Elbarbury A. Differential expression of stem cell mobilization associated-molecules on multi lineage cells from adipose tissue and bone marrow. Immunol Lett. 2003;89:267–70.

    Article  PubMed  Google Scholar 

  12. Gimble JM. Adipose tissue-derived therapeutics. Expert Opin Biol Ther. 2003;3:705–13.

    Article  CAS  PubMed  Google Scholar 

  13. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshitake H, Salingcarnboriboon R, Tsuji K, et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res. 2003;287:289–300.

    Article  PubMed  Google Scholar 

  15. Miura M, Seo BM, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

    Article  PubMed  Google Scholar 

  16. Dell’ Accio F, De Bari C, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44:1928–42.

    Article  Google Scholar 

  17. Petecchia L, Sabatini F, Tavian M, et al. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Invest. 2005;85:962–71.

    Article  PubMed  Google Scholar 

  18. Roberts IA, Campagnoli C, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98:2396–402.

    Article  PubMed  Google Scholar 

  19. English A, Jones EA, Henshaw K, et al. Enumeration and phenotypic characterisation of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 2004;50:817–27.

    Article  PubMed  Google Scholar 

  20. Jia-Ling L, Tsai MS, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19:1450–6.

    Article  Google Scholar 

  21. LeeY KJ, Kim H, et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif. 2007;40:75–90.

    Google Scholar 

  22. Scherjon SA, In ’t Anker PS, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102:1548–9.

    Article  PubMed  Google Scholar 

  23. Belyavski AV, Musina RA, Tarusova OV, et al. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med. 2008;145:539–43.

    Article  PubMed  Google Scholar 

  24. Gargett CE, Schwab KE, Zillwood RM, et al. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80:1136–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Jian LN, Xiang D, Zhang J, et al. Plasticity of human menstrual blood stem cells derived from the endometrium. J Zhejiang Univ-Sci B (Biomed Bitechnol). 2011;12(5):372–80.

    Article  Google Scholar 

  26. Spencer TE, Hayashi K, Hu J, et al. Comparative developmental biology of the mammalian uterus. Curr Top Dev Biol. 2005;68:85–122.

    Article  CAS  PubMed  Google Scholar 

  27. Padykula HA, Coles LG, McCracken JA, et al. A zonal pattern of cell proliferation and differentiation in the rhesus endometrium during the estrogen surge. Biol Reprod. 1984;31(5):1103–18.

    Article  CAS  PubMed  Google Scholar 

  28. Gargett CE, Chan RWS. Label retaining cells in estrogen-induced endometrial regeneration. 4th international Society for Stem Cell Research; Toronto; 2006.

    Google Scholar 

  29. Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update. 2007;13(1):87–101.

    Article  CAS  PubMed  Google Scholar 

  30. Figueria PGM, Abrao MS, Krikun G, et al. Stem cells in endometrium and pathogenesis of endometrium. Ann N Y Acad Sci. 2011;1221(1):10–7.

    Article  Google Scholar 

  31. Cho NH, Park YK, Kim YT, Yang H, Kim SK, et al. Lifetime expression of stem cell markers in the uterine endometrium. Fertil Steril. 2004;81:403–7.

    Article  CAS  PubMed  Google Scholar 

  32. Cui CH, Uyama T, Miyado K, et al. Menstrual blood-derived cells confer human dystrophin expression in the murine model of Duchenne molecular dystrophy via cell fusion and myogenic transdifferentiation. Mol Biol Cell. 2007;18:1586–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Meng X, Thomas E, Ichim JZ, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007;5:57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Patel AN, Park E, Kuzman M, et al. Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant. 2008;17:303–11.

    Article  PubMed  Google Scholar 

  35. Hida M, Nishiyama N, Miyoshi S, et al. Novel cardiac precursor- like cells from human menstrual blood- derived mesenchymal cells. Stem Cells. 2008;26:1695–704.

    Article  CAS  PubMed  Google Scholar 

  36. Gargett CE. Stem cells in gynaecology. Aust NZ J Obstet Gynaecol. 2004;44:380–6.

    Article  Google Scholar 

  37. Chan RWS, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70(6):1738–50.

    Article  CAS  PubMed  Google Scholar 

  38. Gargett CE. Identification and characterization of human endometrial stem/progenitor cells. Aust N Z J Obstet Gynaecol. 2006;46:250–3.

    Article  PubMed  Google Scholar 

  39. Schwab KE, Chan RW, Gargett CE. Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil Steril. 2005;84 Suppl 2:1124–30.

    Article  CAS  PubMed  Google Scholar 

  40. Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(40):1797–806.

    Article  CAS  PubMed  Google Scholar 

  41. Kato K, Yoshimoto M, Kato K, et al. Characterization of side population cells in human normal endometrium. Hum Reprod. 2007;22:1214–23.

    Article  CAS  PubMed  Google Scholar 

  42. Tsuji S, Yoshimoto M, Kato K, et al. Side population cells contribute to the genesis of human endometrium. Fertil Steril. 2008;90:1528–37.

    Article  PubMed  Google Scholar 

  43. Masuda H, Matsuzaki Y, Hiratsu E, et al. Stem cell- like properties of the endomertial side population: implication in endometrial regeneration. PLoS One; 2010;5(4):e10387.

    Google Scholar 

  44. Cervello I, Gil-Sanchis C, Mas A, et al. Human endometrium side population exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One. 2010;5(6):e10964.

    Google Scholar 

  45. Cerevello I, Mas A, Gil-Sanchis C, et al. Reconstruction of endometrium from endometrial side population cells lines. PLoS One. 2011;6(6):e21221.

    Google Scholar 

  46. Ai J, Tabatabaei FS, JafarzadehKashi TS. Human endometrial adult stem cells may differentiate into odontoblast cells. Hypothesis. 2009;7(1):e6.

    Article  Google Scholar 

  47. Ai J, Tabatabaei FS, Kajbafzedeh AM. Myogenic potential of human endometrial stem cells. Indian J Med Hypothesis Ideas. 2009;3:25.

    Google Scholar 

  48. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22:2903–11.

    Article  CAS  PubMed  Google Scholar 

  49. Schwab KE, Hutchinson P, Gargett CE. Identification of surface markers for prospective isolation of human endometrial stromal colony forming cells. Hum Reprod. 2008;23:934–43.

    Article  CAS  PubMed  Google Scholar 

  50. Dimitrov R, Timeva T, Kyurchiev D. Characterization of clonogenic stromal cells isolated from human endometrium. Reproduction. 2008;135:551–8.

    Article  CAS  PubMed  Google Scholar 

  51. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;18:696–704.

    Article  PubMed  Google Scholar 

  52. Gargett CE, Chan RWS, Schwab KE. Endometrial stem cells. Reprod Endocrinol. 2007;19(4):377–83.

    Google Scholar 

  53. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  54. Matthai C, Horvat R, Noe M, et al. Oct-4 expression in human endometrium. Mol Hum Reprod. 2006;12(1):7–10.

    Article  CAS  PubMed  Google Scholar 

  55. Bentz EK, Kenning M, Schneeberger C, et al. OCT-4 expression in follicular and luteal phase endometrium: a pilot study. Reprod Biol Endocrinol. 2010;8:38.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Gidekel S, Pizov G, Bergman Y, et al. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell. 2003;4(5):361–70.

    Article  CAS  PubMed  Google Scholar 

  57. Hubbard SA, Gargett CE. A cancer stem cell origin for human endometrial cancer? Reproduction. 2010;140:23–32.

    Article  CAS  PubMed  Google Scholar 

  58. Masuda H, Maruyana T, Hiratsu E, et al. Non-invasive and real time assessment of reconstructed functional human endometrium in NOD/SCID/γcnull immunodeficient mice. Proc Natl Acad Sci U S A. 2007;104(6):1925–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Jai ANJ, Mehrabani D. The possibility of differentiation of endometrial stem cells into neural cells. Iran Red Crescent Med J. 2010;12(3):328–31.

    Google Scholar 

  60. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364:1789–99.

    Article  PubMed  Google Scholar 

  61. Gazvani R, Templeton A. New considerations for the pathogenesis of endometriosis. Int J Gynaecol Obstet. 2002;76:117–26.

    Article  CAS  PubMed  Google Scholar 

  62. D’ Hooghe TM, Debrock S, Meuleman C, et al. Future directions in endometriosis. Obstet Gynecol Clin North Am. 2003;30:221–44.

    Article  Google Scholar 

  63. Starzinski-Powintz A, Zeitvogel A, Schreiner A, et al. In search of pathogenic mechanism in endometriosis: the challenge for molecular cell biology. Curr Mol Med. 2001;1:655–64.

    Article  Google Scholar 

  64. Sasson IE, Taylor HS. Stem cells and the pathogenesis of endometriosis. Ann My Acad Sci. 2008;1127:106–15.

    Article  Google Scholar 

  65. Hubbard SA, Friel AM, Kumar B, et al. Evidence for cancer stem cells in human endometrial carcinoma. Cancer Res. 2009;69:8241–8.

    Article  CAS  PubMed  Google Scholar 

  66. Friel AM, Sergent PA, Patnaude C, et al. Functional Analysis of cancer stem cell like properties of human endometrial tumor initiating cells. Cell Cycle. 2008;7:242–9.

    Article  CAS  PubMed  Google Scholar 

  67. Leyendecker G, Wildt L, Mall G. The Pathophysiology of endometriosis and adenomyosis: tissue injury and repair. Arch Gynecol Obstet. 2009;280:529–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Chen YJ, Hy L, Chang YL, et al. Suppression of migratory/invasive ability of induction and apoptosis in adenomyosis-derived mesenchymal stem cells by cyclooxygenase-2 inhibitors. Fertil Steril. 2010. doi:10.1016/fertnstert.2010.01.070.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marappagounder Dhanasekaran PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Indumathi, S., Dhanasekaran, M. (2015). Identity of Human Endometrial Tissue: Potent Source of Stem Cells. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6542-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6542-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6541-5

  • Online ISBN: 978-1-4471-6542-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics