Skip to main content

Redundant Human Omentum Fat: A Leap Towards Regenerative Medicine

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Mesenchymal stem cells possess a ground-breaking potential and appear to offer a wonderful opportunity, indeed a responsibility to understand important aspects of human biology involving tissue repair and regeneration. The ubiquitous existences of multipotent mesenchymal stem cells (MSCs) annex to be a regenerative tool rendering the replacement of worn-out cells. Researchers have averted their attention towards identification of various sources of adult mesenchymal stem cells from our own body tissues and fluids. Despite the existence of several advantages and potentials of MSCs from several sources being investigated, bringing stem cells adaptable for regenerative medicine applications in adequate quantities at the right time is a challenge. This is with regard to the inevitable fact that the frequencies of mesenchymal stem cells and their proliferative capacities and differentiation potentials as well as phenotypical and immunomodulatory properties have been shown to vary among sources. Furthermore, cell-based therapies rely to a larger degree on the preparation of an effective dose of ex vivo expanded cells, capable of self-renewal and differentiation. The identification of physiologically relevant and ideal source of stem cells that might be more useful in clinical setting needs to be investigated to ascertain an assured quality in cellular therapy. Additionally, changing the perception, about the successful treatment of stem cells for various diseases, in the light of recent findings becomes mandatory to cure these diseases and further to broaden the potential applications of stem cells. Adult stem cell therapies are routinely used to treat diseases using umbilical cord blood stem cell transplants and peripheral blood stem cell and bone marrow stem cell transplants which are probably the most well-known therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  2. Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic transplants of bone marrow: analysis of precursor cells for osteogenic and haematopoietic tissues. Transplantation. 1968;6:230–47.

    Article  CAS  PubMed  Google Scholar 

  3. Salingcarnboriboon R, Yoshitake H, Tsuji K, et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res. 2003;287(2):289–300.

    Article  CAS  PubMed  Google Scholar 

  4. Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;2004:149–55.

    Article  Google Scholar 

  5. De Bari C, Dell’Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44:1928–42.

    Article  PubMed  Google Scholar 

  6. Sabatini F, Petecchia L, Tavian M, et al. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Invest. 2005;85:962–71.

    Article  CAS  PubMed  Google Scholar 

  7. Campagnoli C, Irene AG R, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98:2396–402.

    Article  CAS  PubMed  Google Scholar 

  8. Musina RA, Belyavski AV, Tarusova OV, et al. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med. 2008;145:539–43.

    Article  CAS  PubMed  Google Scholar 

  9. Jones EA, English A, Henshaw K, et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 2004;50:817–27.

    Article  PubMed  Google Scholar 

  10. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102:1548–9.

    Article  Google Scholar 

  11. Gargett CE, Schwab KE, Zillwood RM, et al. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80:1136–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rocha V, Cornish J, Sievers EL, et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood. 2001;97:2962–71.

    Article  CAS  PubMed  Google Scholar 

  13. Dann EJ, Daugherty CK, Larson RA. Allogeneic bone marrow transplantation for relapsed and refractory Hodgkin’s disease and non-Hodgkin’s lymphoma. Bone Marrow Transplant. 1997;20:369–74.

    Article  CAS  PubMed  Google Scholar 

  14. Hendrikx M, Hensen K, Clijsters C, et al. Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation. Circulation. 2006;114:I-101–7.

    Article  Google Scholar 

  15. Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999;5:309–13.

    Article  CAS  PubMed  Google Scholar 

  16. Kuethe F, Richartz BM, Kasper C, et al. Autologous intracoronary mononuclear bone marrow cell transplantation in chronic ischemic cardiomyopathy in humans. Int J Cardiol. 2005;100:485–91.

    Article  PubMed  Google Scholar 

  17. Kumar AA, Kumar SR, Narayanan R, et al. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant. 2009;7:241–8.

    PubMed  Google Scholar 

  18. Rebelatto CK, Aguiar AM, Moretio, et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med. 2008;233:901–13.

    Article  CAS  Google Scholar 

  19. Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg. 2009;79:235–44.

    Article  PubMed  Google Scholar 

  20. Yanxia Zhu T, Liu KS, et al. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26:664–75.

    Article  PubMed  Google Scholar 

  21. Gimble JM. Adipose tissue-derived therapeutics. Expert Opin Biol Ther. 2003;3:705–13.

    Article  CAS  PubMed  Google Scholar 

  22. Bai X, Yan Y, Song YH, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J. 2010;31:489–501.

    Article  CAS  PubMed  Google Scholar 

  23. Carey VJ, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses’ Health Study. Am J Epidemiol. 1997;145:614–9.

    Article  CAS  PubMed  Google Scholar 

  24. Bolinder J, Kager L, Ostman J, et al. Differences at the receptor and postreceptor levels between human omental and subcutaneous adipose tissue in the action of insulin on lipolysis. Diabetes. 1983;32:117–23.

    Article  CAS  PubMed  Google Scholar 

  25. Ostman J, Arner P, Engfeldt P, Kager L. Regional differences in the control of lipolysis in human adipose tissue. Metabolism. 1979;28:1198–205.

    Article  CAS  PubMed  Google Scholar 

  26. Richelsen B, Pedersen SB, Moller-Pedersen T, et al. Regional differences in triglyceride breakdown in human adipose tissue: effects of catecholamines, insulin, and prostaglandin E2. Metabolism. 1991;40:990–6.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr. 2005;81:555–63.

    CAS  PubMed  Google Scholar 

  28. Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress. Circulation. 2007;116:1234–41.

    Article  CAS  PubMed  Google Scholar 

  29. von Eyben FE, Mouritsen E, Holm J, et al. Intra-abdominal obesity and metabolic risk factors: a study of young adults[ast]. Int J Obes Relat Metab Disord. 2003;27:941–9.

    Article  Google Scholar 

  30. Baglioni S, Francalanci M, Squecco R, et al. Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J. 2009;23:3494–505.

    Article  CAS  PubMed  Google Scholar 

  31. Tholpady SS, Katz AJ, Ogle RC. Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. Anat Rec A Discov Mol Cell Evol Biol. 2003;272A:398–402.

    Article  Google Scholar 

  32. Singh A, Patel J, Litbarg N, et al. Stromal cells cultured from omentum express pluripotent markers, produce high amounts of VEGF, and engraft to injured sites. Cell Tissue Res. 2008;332:81–8.

    Article  CAS  PubMed  Google Scholar 

  33. Toyoda M, Matsubara Y, Lin K, et al. Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues. Cell Biochem Funct. 2009;27:440–7.

    Article  CAS  PubMed  Google Scholar 

  34. Mohammadi R, Azizi S, Delirezh N, et al. Comparison of beneficial effects of undifferentiated cultured bone marrow stromal cells and omental adipose-derived nucleated cell fractions on sciatic nerve regeneration. Muscle Nerve. 2011;43:157–63.

    Article  PubMed  Google Scholar 

  35. Dhanasekaran M, Indumathi S, Kanmani, A et al. (2012) Surface Antigenic Profiling Of Stem Cells from Human Omentum Fat In Comparison with Subcutaneous Fat and Bone Marrow. Cytotechnology. 64(5):497–509.

    Article  CAS  PubMed Central  Google Scholar 

  36. Fujioka S, Tokunaga K, Kawamoto T, et al. Improvement of glucose and lipid metabolism associated with selective reduction of intra-abdominal visceral fat in premenopausal women with visceral fat obesity. Int J Obes. 1991;15:853–9.

    CAS  PubMed  Google Scholar 

  37. Feinleib M. Epidemiology of obesity in relation to health hazards. Ann Intern Med. 1985;103:1019–24.

    Article  CAS  PubMed  Google Scholar 

  38. Kannel WB. Lipids, diabetes and coronary heart disease: insights from the Framingham study. Am Heart J. 1985;110:1100–7.

    Article  CAS  PubMed  Google Scholar 

  39. Keys A. Overweight, obesity, coronary heart disease and mortality. Nutr Rev. 1980;38:297–307.

    Article  CAS  PubMed  Google Scholar 

  40. Mann GV. The influence of obesity and health: part 2. N Engl J Med. 1974;291:226–32.

    Article  CAS  PubMed  Google Scholar 

  41. Larsson B. Obesity, fat distribution and cardiovascular disease. Int J Obes. 1991;15:53–7.

    PubMed  Google Scholar 

  42. Vague J. La differe´nciation sexuelle, facteur determinant des formes de l’obe´site´. Presse me´d. 1947;55:339–40.

    CAS  Google Scholar 

  43. Alvarez-Llamas G, Szalowska E, Marcel de Vries P. Characterization of the human visceral adipose tissue secretome. Mol Cell Proteomics. 2007;6(4):589–600.

    Article  CAS  PubMed  Google Scholar 

  44. Yamauchi T, Kadowaki T. Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int J Obes. 2008;32:S13–8. doi:10.1038/ijo.2008.233.

    Article  CAS  Google Scholar 

  45. Arita Y, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:79–83.

    Article  CAS  PubMed  Google Scholar 

  46. Ryo M, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J. 2004;68:975–81.

    Article  CAS  PubMed  Google Scholar 

  47. Yatagai T, et al. Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism. 2003;52:1274–8.

    Article  CAS  PubMed  Google Scholar 

  48. Yamamoto Y, Hirose H, Saito I, et al. Adiponectin, an adipocyte-derived protein, predicts future insulin-resistance: 2-year follow-up study in Japanese population. J Clin Endocrinol Metab. 2004;89:87–90.

    Article  CAS  PubMed  Google Scholar 

  49. Herrera MF, Pantoja JP, David V-F, et al. Potential additional effect of omentectomy on metabolic syndrome, acute-phase reactants, and inflammatory mediators in grade III obese patients undergoing laparoscopic Roux-en-Y gastric bypass. Diabetes Care. 2010;33:1413–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. DiMascio L, Voermans C, Uqoezwa M, et al. Identification of adiponectin as a novel hematopoietic stem cell growth factor. J Immunol. 2007;178:3511–20.

    Article  CAS  PubMed  Google Scholar 

  51. Yuchang F, Nanlan L, Klein RL, et al. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 2005;46:1369–79.

    Article  Google Scholar 

  52. Berner HS, Lyngstadaas SP, Spahr A, et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone. 2004;35:842–9.

    Article  CAS  PubMed  Google Scholar 

  53. Blouin K, Richard C, Belanger C, et al. Local androgen inactivation in abdominal visceral adipose tissue. J Clin Endocrinol Metab. 2003;88(12):5944–50.

    Article  CAS  PubMed  Google Scholar 

  54. Pinho Mde F, Hurtado SP, El Cheikh MC, et al. Myelopoiesis in the omentum of normal mice and during abdominal inflammatory processes. Cell Tissue Res. 2002;308:87–96.

    Article  PubMed  Google Scholar 

  55. Ouchi N, Kihara S, Arita Y, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-B signaling through a cAMP-dependent pathway. Circulation. 2000;102:1296–301.

    Article  CAS  PubMed  Google Scholar 

  56. Ouchi N, Kihara S, Arita Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 2001;103:1057–63.

    Article  CAS  PubMed  Google Scholar 

  57. Lafontan M, Girard J. Impact of visceral adipose tissue on liver metabolism Part I: heterogeneity of adipose tissue and functional properties of visceral adipose tissue. Diabetes Metab. 2008;34:317–27.

    Article  CAS  PubMed  Google Scholar 

  58. Potdar PD, Jyoti PS. Establishment and molecular characterization of mesenchymal stem cell lines derived from human visceral & subcutaneous adipose tissues. J Stem Cells Regen Med. 2010;6:26–35.

    PubMed Central  PubMed  Google Scholar 

  59. van Harmelen V, Rohrig K, Hauner H. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism. 2004;53:632–7.

    Article  PubMed  Google Scholar 

  60. Dhanasekaran M, Indumathi S, Rajkumar JS, et al. (2012) Long term culture optimization of human omentum fat derived mesenchymal stem cells. Cell Biol Int Doi:10.1042/CBI20120201.

  61. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–9.

    Article  CAS  PubMed  Google Scholar 

  62. Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33:1402–16.

    Article  CAS  PubMed  Google Scholar 

  63. McIntosh K, Zvonic S, Garrett S, et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24:1246–53.

    Article  CAS  PubMed  Google Scholar 

  64. Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129:118–29.

    Article  PubMed  Google Scholar 

  65. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  66. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  CAS  PubMed  Google Scholar 

  68. Tchkonia T, Tchoukalova YD, Giorgadze N, et al. Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots. Am J Physiol Endocrinol Metab. 2005;288:E267–77.

    Article  CAS  PubMed  Google Scholar 

  69. Kingham PJ, Kalbermatten DF, Mahay D, et al. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207:267–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marappagounder Dhanasekaran PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Indumathi, S., Harikrishnan, R., Dhanasekaran, M. (2015). Redundant Human Omentum Fat: A Leap Towards Regenerative Medicine. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6542-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6542-2_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6541-5

  • Online ISBN: 978-1-4471-6542-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics