Skip to main content

Subcutaneous Adipose Tissue-Derived Stem Cells: Advancement and Applications in Regenerative Medicine

  • Chapter
  • First Online:
Book cover Regenerative Medicine

Abstract

Stem cell research has been hailed for its potential to revolutionize the field of regenerative medicine with the ability to regenerate damaged and diseased organs. In addition to offering unprecedented hope in treating many debilitating diseases, stem cells have advanced our understanding of basic biological processes. Intense study on stem cells in the past decade has kindled worthy knowledge about developmental, morphological, and physiological processes that form the basis of tissue and organ formation, maintenance, repair, and regeneration. Today’s medicine generally tries to support or treat injured tissues and organs, but stem cells simply replace them. Stem cell research is complicated and rapidly changing. The correlation of stem cell technology with tissue repair still has a long way to go. Since embryonic stem cells are a thorn inside when it comes to the ethics of therapeutics, stem cells isolated from adult tissues sidestep this issue entirely and have become a potent contemporary source of stem cells for tissue repair and regeneration. Conceptually and from a practical standpoint, the bone marrow has been the most influential source of stem cells that offers a possibility of being used in a wide range of therapeutics. Clinical situations frequently demand stem cells with dependable quality and quantity to treat disorders of cellular degeneration. Challenges to bring advances to the clinical mount have expanded rapidly, engendering new perspectives concerning the identity, origin, and full therapeutic potential of various tissue-specific stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAS:

Adipose-derived adult stem cells

AdMSCs:

Adipose mesenchymal stem cells

AIT:

Autologous islet transplantation

ASCs:

Adipose-derived stem cells

AutoHS:

Autologous human serum

BAT:

Brown adipose tissue

BM:

Bone marrow

BMI:

Body mass index

BMP:

Bone morphogenetic protein

BMSC:

Bone marrow stem cell

BSA:

Bovine serum albumin

CAL:

Cell-assisted lipotransfer

CAM:

Cell adhesion molecule

CCl4:

Carbon tetrachloride

CD:

Cluster of differentiation

CNS:

Central nervous system

DEX:

Dexamethasone

DMD:

Duchenne muscular dystrophy

DMEM-HG:

Dulbecco’s Modified Eagle’s Medium–high glucose

DMEML-G:

Dulbecco’s Modified Eagle’s Medium–low glucose

EBP:

Enhancer-binding protein

ECM:

Extracellular matrix

FBS:

Fetal bovine serum

FGFs:

Fibroblast growth factors

GGF:

Glial growth factor

GPDH:

Glycerol-3-phosphate dehydrogenase

GVHD:

Graft-versus-host disease

HA-TCP:

Hydroxyapatite/ tricalcium phosphate

HGF:

Hepatocyte growth factor

HLA:

Human leukocyte antigen

hMADS:

Multipotent adipose-derived stem cells

IBMX:

3-isobutyl-1-methylxanthine

IFATS:

International Fat Applied Technology Society

IFN:

Interferon

ISCT:

International Society for Cellular Therapy

MEM:

Minimal essential media

MSCs:

Mesenchymal stem cells

NSCs:

Neural stem cells

PDGF:

Platelet-derived growth factor

PLA:

Processed lipoaspirate

PLGA:

Poly(lactic-co-glycolic acid)

PPARγ, LPL:

Peroxisome proliferator-activated receptor γ, lipoprotein lipase

PTH:

Parathyroid hormone

SF:

Subcutaneous fat

SLE:

Systemic lupus erythematosus

SVF:

Stromal vascular fraction

TGF:

Transforming growth factor

TTR:

Transthyretin

UCP1:

Uncoupling protein 1

VEGF:

Vascular endothelial growth factor

vWF:

von Willebrand factor

WAT:

White adipose tissue

References

  1. Weissman I. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100:157–68.

    CAS  PubMed  Google Scholar 

  2. Yoshitake H, Salingcarnboriboon R, Tsuji K, et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res. 2003;287:289–300.

    PubMed  Google Scholar 

  3. Miura M, Seo BM, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

    PubMed  Google Scholar 

  4. Dell’ AF, De Bari C, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44:1928–42.

    Google Scholar 

  5. Petecchia L, Sabatini F, Tavian M, et al. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Invest. 2005;85:962–71.

    PubMed  Google Scholar 

  6. Roberts IA, Campagnoli C, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98:2396–402.

    PubMed  Google Scholar 

  7. Belyavski AV, Musina RA, Tarusova OV, et al. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med. 2008;145:539–43.

    PubMed  Google Scholar 

  8. English A, Jones EA, Henshaw K, et al. Enumeration and phenotypic characterisation of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 2004;50:817–27.

    PubMed  Google Scholar 

  9. Jia-Ling L, Tsai MS, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19:1450–6.

    Google Scholar 

  10. LeeY KJ, Kim H, Hwang KJ, et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif. 2007;40:75–90.

    Google Scholar 

  11. Scherjon SA, In’t Anker PS, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102:1548–9.

    PubMed  Google Scholar 

  12. Gargett CE, Schwab KE, Zillwood RM, et al. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80:1136–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22:2903–11.

    CAS  PubMed  Google Scholar 

  14. Aust L, Devlin B, Foster SJ, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6:7–14.

    CAS  PubMed  Google Scholar 

  15. Gimble JM. Adipose tissue-derived therapeutics. Expert Opin Biol Ther. 2003;3:705–13.

    CAS  PubMed  Google Scholar 

  16. Gimble JM, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5:362–9.

    PubMed  Google Scholar 

  17. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.

    CAS  PubMed  Google Scholar 

  18. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    CAS  PubMed  Google Scholar 

  19. Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol. 2000;16:145–71.

    CAS  PubMed  Google Scholar 

  20. Cinti S. The adipose organ. In: Fantuzzi G, Mazzone T, editors. Adipose tissue and adipokines in health and diseases. Totowa: Humana Press, NJ: 2007.

    Google Scholar 

  21. Cannon B, Neddergard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:278–359.

    Google Scholar 

  22. Cinti S, Morroni M. Brown adipocyte precursor cells: a morphological study. Ital J Anat Embryol. 1995;100 Suppl 1:75–81.

    PubMed  Google Scholar 

  23. Klaus S, Casteilla L, Bouillaud F, et al. The uncoupling protein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int J Biochem. 1991;23:791–801.

    CAS  PubMed  Google Scholar 

  24. Cannon B, Houstek J, Needergard J. Brown adipose tissue, more than an effector of thermogenesis? Ann N Y Acad Sci. 1998;856:171–87.

    CAS  PubMed  Google Scholar 

  25. DiGirolamo M, Fine JB. Obesity. In: Branch Jr WT, Alexander RW, Schlant RC, Hurst J, editors. Cardiology in primary care. New York: McGraw-Hill; 2000. p. 265–78.

    Google Scholar 

  26. Hausman DB, DiGirolamo M, Bartness TJ, et al. The biology of white adipocyte proliferation. Obes Rev. 2001;2:239–54.

    CAS  PubMed  Google Scholar 

  27. Johnson PR, Greenwood MRC. The adipose tissue. In: Weiss L, editor. Cell and tissue biology: a textbook of histology. Baltimore: Urban and Schwarzenberg; 1988.

    Google Scholar 

  28. Ross MH, Reith EJ, Romrell LJ. Adipose tissue. In: Kist K, editor. Histology: a text and atlas. Baltimore: Williams and Wilkins; 1989.

    Google Scholar 

  29. Demartinis FD, Francendese A. Very small fat cell populations: mammalian occurrence and effect of age. J Lipid Res. 1982;23:1107–20.

    CAS  PubMed  Google Scholar 

  30. Poznanski WJ, Waheed I, Van R. Human fat cell precursors: Morphologic and metabolic differentiation in culture. Lab Invest. 1973;29:570–6.

    CAS  PubMed  Google Scholar 

  31. Ng CW, Poznanski WJ, Borowiecki M, et al. Differences in growth in vitro of adipose cells from normal and obese patients. Nature. 1971;231:445.

    CAS  PubMed  Google Scholar 

  32. Prunet-Marcassus B, Cousin B, Caton D, et al. From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp Cell Res. 2006;312:727–36.

    CAS  PubMed  Google Scholar 

  33. Daher SR, Jhonstone BH, Phinney DG, et al. Adipose stromal/stem cells: basic and translational advances: the IFATS collection. Stem Cells. 2008;26:2664–5.

    PubMed  Google Scholar 

  34. Rupnick MA, et al. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci U S A. 2002;99:10730–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Butterwith SC. Molecular events in adipocyte development. Pharmocol Ther. 1994;61:399–411.

    CAS  Google Scholar 

  36. Cornelius P, MacDougald OA, Lane MD. Regulation of adipocyte development. Annu Rev Nutr. 1994;14:99–129.

    CAS  PubMed  Google Scholar 

  37. Prins JB, O’Rahilly S. Regulation of adipose cell number in man. Clin Sci. 1997;92:3–11.

    CAS  PubMed  Google Scholar 

  38. Novakofski J, Hu CY. Culture of isolated adipose tissue cells. J Anim Sci. 1987;65:12–24.

    Google Scholar 

  39. Litthauer D, Serrero G. The primary culture of mouse adipocyte precursor cells in defined medium. Comp Biochem Physiol A Comp Physiol. 1992;101:59–64.

    CAS  PubMed  Google Scholar 

  40. Hausman GJ, Martin RJ. The influence of human growth hormone on preadipocyte development in serum supplemented and serum-free cultures of stromal-vascular cells from pig adipose tissue. Proc Soc Exp Biol Med. 1989;149:541–5.

    Google Scholar 

  41. Gregoire F, Todoroff H, Hauser N, et al. The stromal vascular fraction of rat inguinal and epididymal adipose tissue and the adipoconversion of fat cell precursors in primary culture. Biol Cell. 1990;69:215–22.

    CAS  PubMed  Google Scholar 

  42. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Jurgens W, Oedayrajsingh-Varma M, Helder M, et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res. 2008;332:415–26.

    PubMed Central  PubMed  Google Scholar 

  44. Katz AJ, Tholpady A, Tholpady SS, et al. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells. 2005;23:412–23.

    CAS  PubMed  Google Scholar 

  45. Mitchell JB, McIntosh K, Zvonic S, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell–associated markers. Stem Cells. 2006;24:376–85.

    PubMed  Google Scholar 

  46. Zhu Y, Song K, Fan X, et al. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26:664–75.

    CAS  PubMed  Google Scholar 

  47. De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–9.

    PubMed  Google Scholar 

  48. Rodriguez AM, Elabd C, Amri E-Z, et al. The human adipose tissue is a source of multipotent stem cells. Biochimie. 2005;87:125–8.

    CAS  PubMed  Google Scholar 

  49. Gronthos S, Zannettino A, Hay SJ, et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci. 2003;116:1827–35.

    CAS  PubMed  Google Scholar 

  50. Rodbell M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem. 1964;239:375–80.

    CAS  PubMed  Google Scholar 

  51. Young C, Jarrell BE, Hoying JB, et al. A porcine model for adipose tissue derived endothelial cell transplantation. Cell Transplant. 1992;1:2938.

    Google Scholar 

  52. Fraser JK, Wulur I, Alfonso Z, et al. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150–4.

    CAS  PubMed  Google Scholar 

  53. Oedayrajsingh-Varma MJ, Van Ham SM, Knippenberg M, et al. Adipose tissue derived mesenchymal stem cell yield and growth characteristics are affected by the tissue harvesting procedure. Cytotherapy. 2006;8:166–77.

    CAS  PubMed  Google Scholar 

  54. Boquest AC, Brinchmann JE, Collas P. Isolation of stromal stem cells from human adipose tissue. Methods Mol Biol. 2006;325:35–46.

    PubMed  Google Scholar 

  55. Sekiya I, Larson BL, Smith JR, et al. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells. 2002;20:530–41.

    PubMed  Google Scholar 

  56. Parker AM, Katz AJ. Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther. 2006;6:567–78.

    CAS  PubMed  Google Scholar 

  57. Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–5.

    CAS  PubMed  Google Scholar 

  58. Parker AM, Katz AJ. Adipose derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther. 2006;6(6):567–78.

    CAS  PubMed  Google Scholar 

  59. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    CAS  PubMed  Google Scholar 

  60. Zuk P. Consensus statement. International Fat Applied Technology Society 2nd International Meeting; Pittsburg, PA: 2004.

    Google Scholar 

  61. Mizuno H. Adipose-derived stem and stromal cells for cell-based therapy: current status of preclinical studies and clinical trials. Curr Opin Mol Ther. 2010;89:31–9.

    Google Scholar 

  62. Ebrahimian TG, Pozoulet F, Squiban C, et al. Cell therapy based on adipose tissue-derived stromal cells promote physiological and pathological wound healing. Arterioscler Thromb Vasc Biol. 2009;29:503–10.

    CAS  PubMed  Google Scholar 

  63. Gronthos S, Franklin DM, Leddy HA, et al. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001;189:54–63.

    CAS  PubMed  Google Scholar 

  64. Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31:890–6.

    PubMed  Google Scholar 

  65. Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129:118–29.

    PubMed  Google Scholar 

  66. Wickham MQ, Gimble JM, Vail TP, et al. Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop Relat Res. 2003;412:196–212.

    PubMed  Google Scholar 

  67. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    CAS  PubMed  Google Scholar 

  68. Papayannopoulou T, Priestley GV, Nakamoto B. Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood. 1998;91:2231–9.

    CAS  PubMed  Google Scholar 

  69. Simmons PJ, Masinovsky B, Longenecker BM, et al. Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood. 1992;80:388–95.

    CAS  PubMed  Google Scholar 

  70. Steidl U, Kronenwett R, Haas R. Trans-endothelial migration anti-sense oligonucleotides intercellular adhesion molecule 1 monocytes inflammation. Ann Hematol. 2000;79:414–23.

    CAS  PubMed  Google Scholar 

  71. Südhoff T, Söhngen D. Circulating endothelial adhesion molecules (sE-selectin, sVCAM-1 and sICAM-1) during rHuG-CSF-stimulated stem cell mobilization. J Hematother Stem Cell Res. 2002;11:147–51.

    PubMed  Google Scholar 

  72. Dhanasekaran M, Indumathi S, Poojitha R, et al. Surface antigenic profiling of stem cells from human omentum fat in comparison with subcutaneous fat and bone marrow. Cytotechnology. 2012. doi:10.1007/S10616-102-9427-4.

    Google Scholar 

  73. Zhu H, Mitsuhashi N, Klein A, et al. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells. 2006;24:928–35.

    CAS  PubMed  Google Scholar 

  74. Lee JA, Parrett BM, Conejero JA, et al. Biological alchemy: engineering bone and fat from fat-derived stem cells. Ann Plast Surg. 2003;50(6):610–7.

    PubMed  Google Scholar 

  75. Wosnitza M, Hemmrich K, Groger A, et al. Plasticity of human adipose stem cells to perform adipogenic and endothelial differentiation. Differentiation. 2007;75:12–23.

    CAS  PubMed  Google Scholar 

  76. Rodriguez A-M, Elabd C, Delteil FDR, et al. Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem Biophys Res Commun. 2004;315:255–63.

    CAS  PubMed  Google Scholar 

  77. Elabd C, Chiellini C, Massoudi A, et al. Human adipose tissue-derived multipotent stem cells differentiate in vitro and in vivo into osteocyte-like cells. Biochem Biophys Res Commun. 2007;361:342–8.

    CAS  PubMed  Google Scholar 

  78. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997;64:278–94.

    CAS  PubMed  Google Scholar 

  79. Ogawa R, Mizuno H, Hyakusoku H, et al. Chondrogenic and osteogenic differentiation of adipose-derived stem cells isolated from GFP transgenic mice. J Nippon Med Sch Nihon IkaDaigaku Zasshi. 2004;71(4):240–1.

    Google Scholar 

  80. Halvorsen YD, Franklin D, Bond AL, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng. 2001;7(6):729–41.

    CAS  PubMed  Google Scholar 

  81. Timper K, Seboek D, Eberhardt M, et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341:1135–40.

    CAS  PubMed  Google Scholar 

  82. Bai X, Yan Y, Song Y-H, Seidensticker M, Rabinovich B, Metzele R, Bankson JA, Vykoukal D, Alt E. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J. 2010;31:489–501.

    CAS  PubMed  Google Scholar 

  83. Maddox JR, Liao X, Li F, Niyibizi C. Effects of culturing on the stability of the putative murine adipose derived stem cells markers. Open Stem Cell J. 2009;1:54–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Wan Safwani WKZ, Makpol S, Sathapan S, et al. The changes of stemness biomarkers expression in human adipose-derived stem cells during long-term manipulation. Biotechnol Appl Biochem. 2011;58:261–70.

    PubMed  Google Scholar 

  85. Bonab MM, Alimoghaddam K, Talebian F, et al. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006;7:14.

    PubMed Central  PubMed  Google Scholar 

  86. Liu TM, Hutmacher DW, Hoi J, et al. Identification of common pathways mediating differentiation of bone marrow and adipose tissues derived human mesenchymal stem cells (MSCs) into three mesenchymal lineages. Stem Cells. 2006;25:750.

    PubMed  Google Scholar 

  87. Meza-Zepeda LA, Noer A, Dahl JA, et al. High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. J Cell Mol Med. 2008;12:553–63.

    CAS  PubMed  Google Scholar 

  88. Rubio D, Garcia-Castro J, Martin MC, et al. Spontaneous human adult stem cell transformation. Cancer Res. 2005;65:3035–9.

    CAS  PubMed  Google Scholar 

  89. Dhanasekaran M, Indumathi S, Poojitha R, et al. Plasticity and banking potential of cultured adipose tissue derived mesenchymal stem cells. Cell Tissue Bank. 2012. doi:10.1007/S10561-012-9311-7.

    PubMed  Google Scholar 

  90. Dhanasekaran M, Indumathi S, Mishra R, et al. Unravelling the retention of proliferation and differentiation potency in extensive culture of human subcutaneous fat derived mesenchymal stem cells. Cell Prolif. 2012. doi:10.1111/j.1365-2184.2012.00843.x.

    PubMed  Google Scholar 

  91. Gstraunthaler G. Alternatives to the use of fetal bovine serum: serum-free cell culture. Altex. 2003;20:275–81.

    PubMed  Google Scholar 

  92. Bieback K, Hecker A, Kocaomer A, et al. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells. 2009;27:2331–41.

    CAS  PubMed  Google Scholar 

  93. Kocaoemer A, Kern S, Kluter H, et al. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells. 2007;25:1270–8.

    CAS  PubMed  Google Scholar 

  94. Herrera B, Inman GJ. A rapid and sensitive bioassay for the simultaneous measurement of multiple bone morphogenetic proteins. Identification and quantification of BMP4, BMP6 and BMP9 in bovine and human serum. BMC Cell Biol. 2009;10:20.

    PubMed Central  PubMed  Google Scholar 

  95. Mirabet V, Solves P, Minana MD, et al. Human platelet lysate enhances the proliferative activity of cultured human fibroblast-like cells from different tissues. Cell Tissue Bank. 2008;9:1–10.

    PubMed  Google Scholar 

  96. Spees JL, Gregory CA, Singh H, et al. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther. 2004;9:747–56.

    CAS  PubMed  Google Scholar 

  97. Heiskanen A, Satomaa T, Tiitinen S, et al. N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells. 2007;25:197–202.

    CAS  PubMed  Google Scholar 

  98. Martin MJ, Muotri A, Gage F, et al. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005;11:228–32.

    CAS  PubMed  Google Scholar 

  99. Katz AJ, Parker AM. Methods and compositions for growing adipose stem cells, WO 2007/030652 A2. 2006;69.

    Google Scholar 

  100. Kim SJ, Cho HH, Kim YJ, et al. Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice. Biochem Biophys Res Commun. 2005;329:25–31.

    CAS  PubMed  Google Scholar 

  101. Stute N, Holtz K, Bubenheim M, et al. Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol. 2004;32:1212–25.

    CAS  PubMed  Google Scholar 

  102. Oreffo RO, Triffitt JT. Future potentials for using osteogenic stem cells and biomaterials in orthopaedics. Bone. 1999;25:5S–9.

    CAS  PubMed  Google Scholar 

  103. Yamamoto N, Isobe M, Negishi A, et al. Effects of autologous serum on osteoblastic differentiation in human bone marrow cells. J Med Dent Sci. 2003;50:63–9.

    PubMed  Google Scholar 

  104. Brinchmann JE. Expanding autologous multipotent mesenchymal bone marrow stromal cells. J Neurol Sci. 2008;265:127–30.

    CAS  PubMed  Google Scholar 

  105. Nimura A, Muneta T, Koga H, et al. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum. 2008;58:501–10.

    CAS  PubMed  Google Scholar 

  106. Lindroos B, Boucher S, Chase L, et al. Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy. 2009;11:958–72.

    CAS  PubMed  Google Scholar 

  107. Rajala K, Lindros B, Hussein SM, et al. A defined and xeno-free culture method enabling the establishment of clinical grade human embryonic, induced Pluripotent and adipose stem cells. PLoS One. 2010;5:e10246.

    PubMed Central  PubMed  Google Scholar 

  108. Parker AM, Shang H, Khurgel M, et al. Low serum and serum-free culture of multipotential human adipose stem cells. Cytotherapy. 2007;9:637–46.

    CAS  PubMed  Google Scholar 

  109. Izadpanah R, Kaushal D, Kriedt C, et al. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res. 2008;68:4229–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Boquest AC, Shahdadfar A, Fronsdal K, et al. Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell. 2005;16:1131–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Kartsogiannis V, Ng KW. Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol. 2004;228:79–102.

    CAS  PubMed  Google Scholar 

  112. Hattori H, Sato M, Masuoka K, et al. Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs. 2004;178(1):2–12.

    PubMed  Google Scholar 

  113. Justesen J, Pedersen SB, Stenderup K, et al. Subcutaneous adipocytes can differentiate into bone-forming cells in vitro and in vivo. Tissue Eng. 2004;10(3–4):381–91.

    CAS  PubMed  Google Scholar 

  114. Hicok KC, Du Laney TV, Zhou YS, et al. Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 2004;10(3–4):371–80.

    CAS  PubMed  Google Scholar 

  115. Lendeckel S, Jodicke A, Christophis P, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004;32(6):370–3.

    PubMed  Google Scholar 

  116. Conejero J, Lee J, Parrett B, et al. Repair of palatal bone defects using osteogenically differentiated fat-derived stem cells. Plast Reconstr Surg. 2006;117(3):857–63.

    CAS  PubMed  Google Scholar 

  117. Minn KW, Min KH, Chang H, et al. Effects of fat preparation methods on the viabilities of autologous fat grafts. Aesthetic Plast Surg. 2010;34(5):626–31.

    PubMed  Google Scholar 

  118. Cherubino M, Marra KG. Adipose-derived stem cells for soft tissue reconstruction. Regen Med. 2009;4(1):109–17.

    PubMed  Google Scholar 

  119. Von Heimburg D, Zachariah S, Heschel I, et al. Human preadipocytes seeded on freeze-dried collagen scaffolds investigated in vitro and in vivo. Biomaterials. 2001;22(5):429–38.

    Google Scholar 

  120. Von Heimburg D, Zachariah S, Low A, et al. Influence of different biodegradable carriers on the in vivo behavior of human adipose precursor cells. Plast Reconstr Surg. 2001;108(2):411–20; discussion 421–12.

    Google Scholar 

  121. Patrick Jr CW, Chauvin PB, Hobley J. Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng. 1999;5(2):139–51.

    CAS  PubMed  Google Scholar 

  122. Yoshimura K, Sato K, Aoi N, et al. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of Stem Cell. Rev Rep. 2008;32:48–55.

    Google Scholar 

  123. Yoshimura K, Sato K, Aoi N, et al. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg. 2008;34:1178–85.

    CAS  PubMed  Google Scholar 

  124. Tissue Genesis Cell Isolation System. Tissue Genesis Incorporated. 10 Feb 2009. Available at: http://www.tissuegenesis.com/.

  125. Cytori’s Celution® 700 System to be regulated as a medical device by U.S. FDA. 20 Jul 2009. Available at: http://www.medicalnewstoday.com/articles/158091.php.

  126. Bongso A, Fong CY, Ng SC, et al. Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod. 1994;9:2110–7.

    CAS  PubMed  Google Scholar 

  127. Jaiswal RK, Jaiswal N, Bruder SP, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem. 2000;275:9645–52.

    CAS  PubMed  Google Scholar 

  128. Gonzalez-Rey E, Gonzalez MA, Varela N, et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis. 2010;69:241–8.

    CAS  PubMed  Google Scholar 

  129. Gonzalez-Rey E, Anderson P, Gonzalez MA, et al. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58:929–39.

    CAS  PubMed  Google Scholar 

  130. Fraser JK, Wulur I, Alfonso Z, et al. Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy. 2007;9:459–67.

    CAS  PubMed  Google Scholar 

  131. Dragoo JL, Samimi B, Zhu M, et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J Bone Joint Surg Br. 2003;85(5):740–7.

    CAS  PubMed  Google Scholar 

  132. Guilak F, Awad HA, Fermor B, et al. Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology. 2004;41(3–4):389–99.

    CAS  PubMed  Google Scholar 

  133. Awad HA, Wickham MQ, Leddy HA, et al. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004;25(16):3211–22.

    CAS  PubMed  Google Scholar 

  134. Fang B, Song Y, Liao L, et al. Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant Proc. 2007;39:3358–62.

    CAS  PubMed  Google Scholar 

  135. Fang B, Song Y, Lin Q, et al. Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children. Pediatr Transplant. 2007;11:814–7.

    CAS  PubMed  Google Scholar 

  136. Fang B, Song Y, Zhao RC, et al. Using human adipose tissue-derived mesenchymal stem cells as salvage therapy for hepatic graft-versus-host disease resembling acute hepatitis. Transplant Proc. 2007;39:1710–3.

    CAS  PubMed  Google Scholar 

  137. Katz AJ, Llull R, Hedrick MH, et al. Emerging approaches to the tissue engineering of fat. Clin Plast Surg. 1999;26:587–603. viii.

    CAS  PubMed  Google Scholar 

  138. Gneechi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Aky-modified mesenchymal stem cells. Nat Med. 2005;11:367–8.

    Google Scholar 

  139. Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOP-CARE-AMI). Circulation. 2002;106:3009–17.

    PubMed  Google Scholar 

  140. Valina C, Pinkernell K, Song YH, et al. Intra-coronary administration of autologous adipose tissue-derived stem cells improved left ventricular function, perfusion, and remodeling after acute myocardial infarction. Eur Heart J. 2007;28(21):2667–77.

    PubMed  Google Scholar 

  141. Cai L, Jhonstone BH, Cook TG, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. J Invest Dermatol. 2009;129(9):2275–87.

    Google Scholar 

  142. Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.

    PubMed  Google Scholar 

  143. Planat-Benard V, Js S, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109(5):656–63.

    PubMed  Google Scholar 

  144. Martinez-Estrada OM, Munoz-Santos Y, Julve J, et al. Human adipose tissue as a source of Flk-1+ cells: new method of differentiation and expansion. Cardiovasc Res. 2005;65(2):328–33.

    CAS  PubMed  Google Scholar 

  145. Miranville A, Heeschen C, Sengenes C, et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;10(3):349–55.

    Google Scholar 

  146. Zatz M, de Paula F, Starling A, et al. The 10 autosomal recessive limb-girdle muscular dystrophies. Neuromuscul Disord. 2003;13:532–44.

    PubMed  Google Scholar 

  147. Schultz E, McCormic KM. Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol. 1994;123:213–57.

    CAS  PubMed  Google Scholar 

  148. Laguens R. Satellite cells of skeletal muscle fibers in human progressive muscular dystrophy. Virchows Arch Pathol Anat Physiol Klin Med. 1963;336:564–9.

    CAS  PubMed  Google Scholar 

  149. Heslop L, Morgan JE, Partridge TA. Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J Cell Sci. 2000;113:2299–308.

    CAS  PubMed  Google Scholar 

  150. Letrucq F, Kaplan JC. Molecular basis of dystrophinopathies. J Soc Biol. 2005;199:5–11.

    Google Scholar 

  151. Schultz E, Lipton BH. Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech Ageing Dev. 1982;20:377–83.

    CAS  PubMed  Google Scholar 

  152. Mizuno H, Zuk PA, Zhu M, et al. Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg. 2002;109(1):199–209; discussion 210–191.

    PubMed  Google Scholar 

  153. Mcintosh K, Zvonic S, Garrett S, et al. The immunogenicity of human adipose derived cells: temporal changes in vitro. Stem Cells. 2006;24(5):1246–53.

    CAS  PubMed  Google Scholar 

  154. Ap B, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–76.

    Google Scholar 

  155. Bacou F, El Andalousi RB, Daussin PA, et al. Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle. Cell Transplant. 2004;13(2):103–11.

    PubMed  Google Scholar 

  156. Di Rocco G, Iachininoto MG, Tritarelli A. Myogenic potential of adipose tissue derived cells. J Cell Sci. 2006;119(Pt 14):2945–52.

    PubMed  Google Scholar 

  157. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–10.

    CAS  PubMed  Google Scholar 

  158. Richards LJ, Kilpatrick TJ, Barlett PF. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci U S A. 1995;92:11879–83.

    Google Scholar 

  159. Delfini C, Centis F, Falzetti F, et al. Expression of CD133 on a human cell line lacking CD34. Leukemia. 2002;16:2174–5; author reply 2175.

    CAS  PubMed  Google Scholar 

  160. Martin CM, Meeson AP, Robertson SM, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265:262–75.

    CAS  PubMed  Google Scholar 

  161. Yui J, Chiu CP, Lansdorp PM. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood. 1998;91:3255–62.

    CAS  PubMed  Google Scholar 

  162. Zimmermann S, Voss M, Kaiser S, et al. Lack of telomerase activity in human mesenchymal stem cells. Leukemia. 2003;17:1146–9.

    CAS  PubMed  Google Scholar 

  163. Goldman S. Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 2005;23:862–71.

    Google Scholar 

  164. Kang SK, Putnam LA, Ylostalo J, et al. Neurogenesis of rhesus adipose stromal cells. J Cell Sci. 2004;117:4289–99.

    CAS  PubMed  Google Scholar 

  165. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, Okochi H, Ochiya T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007;46:219.

    CAS  PubMed  Google Scholar 

  166. Lofti AS, Khosdel A, Soleimani M, et al. High yield generation of hepatocyte like cells from adipose derived stem cells. Sci Res Essay. 2012;7(10):1141–7.

    Google Scholar 

  167. Seo MJ, Suh SY, Bae YC, et al. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun. 2005;328(1):258–64.

    CAS  PubMed  Google Scholar 

  168. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, Kawamata M, Kato T, Okochi H, Ochiya T. IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells. 2008;26:2705–12.

    CAS  PubMed  Google Scholar 

  169. Garg S, Rosenstock J, Silverman B, et al. Efficacy and safety of preprandial human insulin inhalation powder versus injectable insulin in patients with type 1 diabetes. Diabetologia. 2006;49:891–9.

    CAS  PubMed  Google Scholar 

  170. Balamurugan AN, Giannoukakis N, Smetanka C. Prospective and challenges of islet transplantation for the therapy of autoimmune diabetes. Pancreas. 2006;32:231–43.

    CAS  PubMed  Google Scholar 

  171. Samson SL, Chan L. Gene therapy for diabetes: reinventing the islet. Trends Endocrinol Metab. 2006;17:92–100.

    CAS  PubMed  Google Scholar 

  172. Berney T, Mamin A, Shapiro J, et al. Detection of insulin mRNA in the peripheral blood after human islet transplantation predicts deterioration of metabolic control. Am J Transplant. 2006;6:1704–11.

    CAS  PubMed  Google Scholar 

  173. Ryan EA, Shandro T, Green K, et al. Assessment of the severity of hypoglycemia and glycemic lability in type 1 diabetic subjects undergoing islet transplantation. Diabetes. 2004;53:955–62.

    CAS  PubMed  Google Scholar 

  174. Shapiro AMJ, Lakey JRT, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–8.

    CAS  PubMed  Google Scholar 

  175. Shapiro AMJ, Ricordi C, Hering BJ, et al. International trial of the edmonton protocol for islet transplantation. N Engl J Med. 2006;355:1318–30.

    CAS  PubMed  Google Scholar 

  176. Toso C, Vallee JP, Morel P, et al. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant. 2008;8:701–6.

    CAS  PubMed  Google Scholar 

  177. Alejandro R, Barton FB, Hering BJ, et al. Update from the collaborative islet transplant registry. Transplantation. 2008;86:1738.

    Google Scholar 

  178. Matsumoto S. Autologous islet cell transplantation to prevent surgical diabetes. J Diabetes. 2011;3(4):328–36.

    PubMed  Google Scholar 

  179. Garcia-Olmo D, Garcia-Arranz M, Herreros D, et al. A phase I clinical trial of the treatment of crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48(7):1416–23.

    PubMed  Google Scholar 

  180. Rigotti G, Marchi A, Galie N, et al. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007;119(5):1409–22.

    CAS  PubMed  Google Scholar 

  181. Hanson SE, Bentz ML, Hematti P, et al. Mesenchymal system cell therapy for non-healing cutaneous wounds. Plast Reconstr Surg. 2010;125(2):510–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Yanez R, Lamana ML, Garcia-Castro J, et al. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24:2582–91.

    CAS  PubMed  Google Scholar 

  183. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–41.

    PubMed  Google Scholar 

  184. Devine SM, Cobbs C, Jennings M, et al. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 2003;101:2999–3001.

    CAS  PubMed  Google Scholar 

  185. Lai K, Zeng K, Zeng F, et al. Allogeneic adipose-derived stem cells suppress Th17 lymphocytes in patients with active lupus in vitro. Acta Biochimica et Biophysica Sinica. 2011;43(10):805–12.

    CAS  PubMed  Google Scholar 

  186. Festy F, Hoareau L, Bes-Houtmann S, et al. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem Cell Biol. 2005;124:113–21.

    CAS  PubMed  Google Scholar 

  187. Layland KS, Strem BM, Jordan MC, et al. Adipose tissue derived cells improve cardiac function following myocardial infarction. J Surg Res. 2008;155:217.

    Google Scholar 

  188. Haniffa MA, Wang XN, Haltick U, et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol. 2007;179:1595–604.

    CAS  PubMed  Google Scholar 

  189. Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33:1402–16.

    CAS  PubMed  Google Scholar 

  190. Rebelatto CK, Aguiar AM, Moretio, et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med. 2008;233:901–13.

    CAS  Google Scholar 

  191. Zannettino ACW, Paton S, Arthur A, et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol. 2008;214:413–21.

    CAS  PubMed  Google Scholar 

  192. Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.

    CAS  PubMed  Google Scholar 

  193. De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett. 2003;89:267–70.

    PubMed  Google Scholar 

  194. Rubin JP, Bennett JM, Doctor JS, et al. Collagenous microbeads as a scaffold for tissue engineering with adipose derived stem cells. Plast Reconstr Surg. 2007;120:414–24.

    CAS  PubMed  Google Scholar 

  195. Li H, Dai K, Tang T. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2. Biochem Biophys Res Commun. 2007;356:836–42.

    CAS  PubMed  Google Scholar 

  196. Park DJ, Choi BH, Zhu HJ, et al. Injectable bone using chitosan alginate gel/ mesenchymal stem cells/ BMP-2 composites. J Carnio Maxillofac Surg. 2005;33:50–4.

    Google Scholar 

  197. Varghese S, Hwang NS, Canver AC, et al. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol. 2008;27:12–21.

    CAS  PubMed  Google Scholar 

  198. Mehlhorn AT, Niemeyer P, Kaiser S, et al. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng. 2006;12:2853–62.

    CAS  PubMed  Google Scholar 

  199. Erickson GR, Gimble JM, Franklin DM, et al. Chondrogenic potential of adipose tissue derived stromal cells in-vitro and in-vivo. Biochem Biophys Res Commun. 2002;290:763–9.

    CAS  PubMed  Google Scholar 

  200. Garcia-Olmo D, Garcia-Arranz M, Herreros D. Expanded adipose-derived stem cells for the treatment of complex perianal fistula including Crohn’s disease. Expert Opin Biol Ther. 2008;8:1417–23.

    CAS  PubMed  Google Scholar 

  201. Awad HA, Wickham MQ, Leddy HA, et al. Chondrogenic differentiation of adipose-derived adult stem cells. Biochem Biophys Res Commun. 2006;343:644–52.

    Google Scholar 

  202. Safford KM, Hicok KC, Safford SD, et al. Neurogenic differentiation of murine and human adipose derived stromal cells. Biochem Biophys Res Commun. 2002;294:371–9.

    CAS  PubMed  Google Scholar 

  203. Vieira NM, Brandalise V, Zucconi E, et al. Human multipotent adipose-derived stem cells restore dystrophin expression of duchenne skeletal-muscle cells in vitro. Biol Cell. 2008;100:231–41.

    CAS  PubMed  Google Scholar 

  204. Talens-Visconti R, Bonora A, Jover R, et al. Human mesenchymal stem cells from adipose tissue: differentiation into hepatic lineage. Toxicol In Vitro. 2007;21:324–9.

    CAS  PubMed  Google Scholar 

  205. Kingham PJ, Kalbermatten DF, Mahay D, et al. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207:267–74.

    CAS  PubMed  Google Scholar 

  206. Lee W-CC, Sepulveda JL, Rubin JP, et al. Cardiomyogenic differentiation potential of human adipose precursor cells. Int J Cardiol. 2008;133(3):399–401.

    PubMed  Google Scholar 

  207. Bunnell BA, Flaat M, Gagliardi C, et al. Adipose derived stem cells: isolation, expansion and differentiation. Methods. 2008;45:115–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Dicker A, Le Blanc K, Astrom G, et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res. 2005;308:283–90.

    CAS  PubMed  Google Scholar 

  209. Cowan CM, Shi Y-Y, Aalami OO, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol. 2004;22:560–7.

    CAS  PubMed  Google Scholar 

  210. Brett Peterson JZ, Iglesias R, Kabo M, et al. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng. 2005;11:120–9.

    PubMed  Google Scholar 

  211. Lin Y, Luo E, Chen X, et al. Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med. 2005;9:929–39.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marappagounder Dhanasekaran PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Indumathi, S., Mishra, R., Harikrishnan, R., Dhanasekaran, M. (2015). Subcutaneous Adipose Tissue-Derived Stem Cells: Advancement and Applications in Regenerative Medicine. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6542-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6542-2_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6541-5

  • Online ISBN: 978-1-4471-6542-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics