Skip to main content

Computational Aspects of Softness Perception

  • Chapter
  • First Online:

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

We perceive compliance of deformable objects using several sources of sensory information obtained during the manual interaction. Some signals are inherently informative about how soft an object is. For example, softness of objects with deformable surfaces can be estimated directly from the pattern of skin deformation over time. On the other hand, other signals that are not inherently informative about compliance can be combined with other sensory signals. This is the case of force applied to the object and the amount of indentation that alone are not informative about softness, but combined they can provide an estimate of compliance. To obtain a unified sense of how soft the object is, the brain needs to appropriately combine all available information into one overall softness percept that accounts for the different contribution of all sensory signals, their time-course, and the precision of the information available. This chapter identifies some of the contributions of sensory information to softness perception and sketches the requirements of a computational model for their combination. This analysis is based on the redundancy and complementarity between the sources of information. Furthermore, it accounts for the dynamic aspects of the combination process by considering the integration of a priori knowledge, expectations, time-evolving sensory signals, and the movement strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Backus BT, Banks MS (1999) Estimator reliability and distance scaling in stereoscopic slant perception. Perception 28:217–242

    Article  Google Scholar 

  • Bergmann Tiest WM, Kappers AML (2009) Cues for haptic perception of compliance. IEEE Trans Haptics 2(4):189–199

    Article  Google Scholar 

  • Bicchi A, Scilingo EP, De Rossi D (2000) Haptic discrimination of softness in teleoperation: the role of the contact area spread rate. IEEE Trans Robot Autom 16(5):496–504

    Article  Google Scholar 

  • Bresciani J-P, Ernst MO, Drewing K, Bouyer G, Maury V, Kheddar A (2005) Feeling what you hear: auditory signals can modulate tactile taps perception. Exp Brain Res 162(2):172–180

    Google Scholar 

  • Cellini C, Kaim L, Drewing K (2013) Visual and haptic integration in the estimation of softness of deformable objects. I-Perception 4(8):516–531

    Google Scholar 

  • Chen J–S, Srinivasan MA (1998) Human haptic interaction with soft objects: discriminability, force control, and contact visualization. MIT, RLE technical report 619 (pp 1–208)

    Google Scholar 

  • Di Luca M (2011) Perceived compliance in a pinch. Vis Res 51(8):961–967

    Article  Google Scholar 

  • Di Luca M, Knorlein B, Ernst MO, Harders M (2011) Effects of visual-haptic asynchronies and loading-unloading movements on compliance perception. Brain Res Bull 85(5):245–259

    Article  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley, New York

    Google Scholar 

  • Ernst MO (2001) Psychophysikalische Untersuchungen zur visuomotorischen Integration beim Menschen: visuelle und haptische Wahrnehmung virtueller und realer Objekte. Eberhard-Karls-Universität Tübingen

    Google Scholar 

  • Ernst MO (2006) A Bayesian view on multimodal cue integration. In: Knoblich G, Thornton IM, Grosjean M, Shiffrar M (eds) Human body perception from the inside out. Oxford University Press, NY, pp 105–131

    Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–33

    Article  Google Scholar 

  • Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8(4): 162–169

    Google Scholar 

  • Freyberger FKB, Färber B (2006) Compliance discrimination of deformable objects by squeezing with one and two fingers. Proc EuroHaptics 06:271–276

    Google Scholar 

  • Girshick AR, Banks MS (2009) Probabilistic combination of slant information: weighted averaging and robustness as optimal percepts. J Vis 9(9):1–20

    Article  Google Scholar 

  • Gori M, Del Viva M, Sandini G, Burr DC (2008) Young children do not integrate visual and haptic form information. Curr Biol 18(9):694–698

    Article  Google Scholar 

  • Helbig HB, Ernst MO (2007) Knowledge about a common source can promote visual haptic integration. Perception 36:1523–1533

    Article  Google Scholar 

  • Jones LA, Hunter IW (1990) A perceptual analysis of stiffness. Exp Brain Res 79:150–156

    Article  Google Scholar 

  • Juni MZ, Gureckis TM, Maloney LT (2012) Effective integration of serially presented stochastic cues. J Vis 12(8):12–12

    Article  Google Scholar 

  • Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57(3):169–185

    Article  MATH  Google Scholar 

  • Kaim L, Drewing K (2009) Finger force of exploratory movements is adapted to the compliance of deformable objects. In: Proceedings world haptics 2009, third joint EuroHaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. The Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, pp 565–569

    Google Scholar 

  • Knill DC, Richards W (1996) Perception as Bayesian inference. Cambridge University Press, Cambridge

    Google Scholar 

  • Kuschel M, Di Luca M, Buss M, Klatzky RL (2010) Combination and integration in the perception of visual-haptic compliance information. IEEE Trans Haptics 3(4):234–244

    Article  Google Scholar 

  • Mamassian P, Landy MS, Maloney LT (2002) Bayesian modelling of visual perception. In: Rao R, Olshausen BA, Lewicki MS (eds) Probabilistic models of the brain: perception and neural function. MIT Press, Cambridge, pp 13–36

    Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9(8):1265–1279

    Article  MATH  Google Scholar 

  • Nisky I, Mussa-Ivaldi FA (2008) A regression and boundary-crossing-based model for the perception of delayed stiffness. IEEE Trans Haptics 1(2):73–83

    Article  Google Scholar 

  • Ohnishi H, Mochizuki K (2007) Effect of delay of feedback force on perception of elastic force: a psychophysical approach. IEICE Trans Commun E90-B(1):12–20

    Google Scholar 

  • Oruç İ, Maloney LT, Landy MS (2003) Weighted linear cue combination with possibly correlated error. Vis Res 43(23):2451–2468

    Article  Google Scholar 

  • Parise CV, Spence C, Ernst MO (2011) When correlation implies causation in multisensory integration. Curr Biol 1–4

    Google Scholar 

  • Plaisier MA, Ernst MO (2012) Two hands perceive better than one. In: Haptics: perception, devices, mobility, and communication. Lecture notes in computer science, vol 7283, pp 127–132

    Google Scholar 

  • Pressman A, Karniel A, Mussa-Ivaldi FA (2011) How soft is that pillow? The perceptual localization of the hand and the haptic assessment of contact rigidity. J Neurosci 31(17):6595–6604

    Article  Google Scholar 

  • Roland PE, Ladegaard-Pedersen H (1977) A quantitative analysis of sensations of tensions and of kinaesthesia in man. Brain 100:671–692

    Article  Google Scholar 

  • Rao RP (1999) An optimal estimation approach to visual perception and learning. Vis Res 39(11):1963–1989

    Article  Google Scholar 

  • Roskies AL (1999) The binding problem. Neuron 24:7–9

    Article  Google Scholar 

  • Schieber MH (1996) Individuated finger movements: rejecting the labeled-line hypothesis. In: Wing AM, Haggard P, Flanagan JR (eds) Hand and brain. Academic Press, New York, pp 81–98

    Chapter  Google Scholar 

  • Scilingo EP, Bianchi M, Grioli G, Bicchi A (2010) Rendering softness: integration of kinesthetic and cutaneous information in a haptic device. IEEE Trans Haptics 3(2):109–118

    Article  Google Scholar 

  • Smeets JBJ, Brenner E (2001) Independent movements of the digits in grasping. Exp Brain Res 139:92–100

    Article  Google Scholar 

  • Srinivasan MA, LaMotte RH (1995) Tactual discrimination of softness. J Neurophysiol 73(1): 88–101

    Google Scholar 

  • Tan HZ, Durlach NI, Beauregard GL, Srinivasan MA (1995) Manual discrimination of compliance using active pinch grasp: the roles of force and work cues. Percept Psychophysics 57(4):495–510

    Article  Google Scholar 

  • Thurlow WR, Jack CE (1973) Certain determinants of the “ventriloquist effect”. Percept Mot Skills 36:1171–1184

    Article  Google Scholar 

  • van Ee R, van Dam LCJ, Erkelens CJ (2002) Bi-stability in perceived slant when binocular disparity and monocular perspective specify different slants. J Vis 2(9):2–2

    Article  Google Scholar 

  • Visell Y, Giordano BL, Millet G, Cooperstock JR (2011) Vibration influences haptic perception of surface compliance during walking. PloS One 6(3):e17697

    Article  Google Scholar 

  • Witkin HA, Wapner S, Leventhal TJ (1952) Sound localization with conflicting visual and auditory cues. J Exp Psychol 43:58–67

    Article  Google Scholar 

  • Wolpert DM (1997) Computational approaches to motor control. Trends Cogn Sci 1(6):209–216

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Markus Rank and Darren Rhodes for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Di Luca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Di Luca, M., Ernst, M.O. (2014). Computational Aspects of Softness Perception. In: Di Luca, M. (eds) Multisensory Softness. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6533-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6533-0_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6532-3

  • Online ISBN: 978-1-4471-6533-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics