Skip to main content

Haptic Augmentation in Soft Tissue Interaction

  • Chapter
  • First Online:
  • 1104 Accesses

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

Haptic augmented reality is a new paradigm in human—computer interaction. Akin to traditional visual augmented reality, the technique strives to combine real and virtual sensory stimuli to alter perception during object manipulation. In the context of soft tissue interaction the stimuli felt during contact and indentation of a deformable object are overlaid with forces generated with a haptic device. Such a combined rendering can provide a user with an altered percept of object properties and/or shape. This chapter first outlines the general concept of integrating haptics into augmented reality. Thereafter, we will introduce two heuristic algorithms for haptic augmentation—covering stiffness modulation at either one or two contact points. This will address topics of parameter estimation, contact detection and augmentation computation. Finally, an application example is given in the context of tissue palpation. A method for augmenting virtual stiffer inclusions in physical soft tissue samples is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bau O, Poupyrev I, Israr A, Harrison C (2010) Teslatouch: electrovibration for touch surfaces. In: Proceedings of the 23nd annual ACM symposium on user interface software and technology, UIST ’10, pp 283–292

    Google Scholar 

  • Bayart B, Didier JY, Kheddar A (2008) Force feedback virtual painting on real objects: a paradigm of augmented reality haptics. Lect Notes Comput Sci (EuroHaptics 2008) 5024:776–785

    Google Scholar 

  • Bayart B, Drif A, Kheddar A, Didier JY (2007) Visuo-haptic blending applied to a tele-touch-diagnosis application. Lect Notes Comput Sci (Eurohaptics 2007) 4563:617–626

    Google Scholar 

  • Bayart B, Kheddar A (2006) Haptic augmented reality taxonomy: haptic enhancing and enhanced haptics. In: Proceedings of EuroHaptics, pp 641–644

    Google Scholar 

  • Bennett E, Stevens B (2006) The effect that the visual and haptic problems associated with touching a projection augmented model have on object-presence. Presence: Teleoperators Virtual Environ 15(4):419–437

    Article  Google Scholar 

  • Bianchi G, Jung C, Knörlein B, Székely G, Harders M (2006a) High-fidelity visuo-haptic interaction with virtual objects in multi-modal AR systems. In: Proceedings of the IEEE and ACM international symposium on mixed and augmented reality, pp 187–196

    Google Scholar 

  • Bianchi G, Knörlein B, Székely G, Harders M (2006b) High precision augmented reality haptics. In: Proceedings of EuroHaptics, pp 169–168

    Google Scholar 

  • Billinghurst M, Kato H, Poupyrev I (2001) The magic book-moving seamlessly between reality and virtuality. IEEE Comput Graph Appl 21(3):6–8

    Google Scholar 

  • Borst CW, Volz RA (2005) Evaluation of a haptic mixed reality system for interactions with a virtual control panel. Presence: Teleoperators Virtual Environ 14(6):677–696

    Article  Google Scholar 

  • Ha T, Chang Y, Woo W (2007) Usability test of immersion for augmented reality based product design. Lect Notes Comput Sci (Edutainment 2007) 4469:152–161

    Google Scholar 

  • Haddadi A, Hashtrudi-Zaad K (2008) A new method for online parameter estimation of Hunt-Crossley environment dynamic models. In: Proceedings of the IEEE international conference on intelligent robots and systems, pp 981–986

    Google Scholar 

  • Harders M, Bianchi G, Knörlein B, Székely G (2009) Calibration, registration, and synchronization for high precision augmented reality haptics. IEEE Trans Vis Comput Graph 15(1):138–149

    Article  Google Scholar 

  • Hunt K, Crossley F (1975) Coefficient of restitution interpreted as damping in vibroimpact. ASME J Appl Mech 42:440–445

    Article  Google Scholar 

  • Janabi-Sharifi F, Hayward V, Chen CSJ (2000) Discrete-time adaptive windowing for velocity estimation. IEEE Trans Control Syst Technol 8(6):1003–1009

    Article  Google Scholar 

  • Jeon S, Choi S (2008) Modulating real object stiffness for haptic augmented reality. Lect Notes Comput Sci (EuroHaptics 2008) 5024:609–618

    Google Scholar 

  • Jeon S, Choi S (2009) Haptic augmented reality: taxonomy and an example of stiffness modulation. Presence: Teleoperators Virtual Environ 18(5):387–408

    Article  Google Scholar 

  • Jeon S, Choi S (2010) Stiffness modulation for haptic augmented reality: extension to 3D interaction. In: Proceedings of the haptics symposium, pp 273–280

    Google Scholar 

  • Jeon S, Choi S (2011) Real stiffness augmentation for haptic augmented reality. Presence: Teleoperators Virtual Environ 20(4):337–370

    Article  MathSciNet  Google Scholar 

  • Jeon S, Choi S, Harders M (2012) Rendering virtual tumors in real tissue mock-ups using haptic augmented reality. IEEE Trans Haptics 5(1):77–84

    Article  Google Scholar 

  • Jeon S, Harders M (2012) Extending haptic augmented reality: modulating stiffness during two-point squeezing. In: Proceedings of the haptics symposium, pp 141–146

    Google Scholar 

  • Kajimoto H, Kawakami N, Tachi S, Inami M (2004) SmartTouch: electric skin to touch the untouchable. IEEE Comput Graph Appl 24(1):36–43

    Article  Google Scholar 

  • Kyung KU, Lee JY (2009) Ubi-Pen: a haptic interface with texture and vibrotactile display. IEEE Comput Graph Appl 29(1):24–32

    Article  Google Scholar 

  • Lee C, Adelstein BD, Choi S (2008) Haptic weather. In: Proceedings of the symposium on haptic interfaces for virtual environments and teleoperator systems, pp 473–474

    Google Scholar 

  • Lee J, Choi S (2010) Effects of haptic guidance and disturbance on motor learning: potential advantage of haptic disturbance. In: Proceedings of the IEEE haptics symposium (HS), pp 335–342

    Google Scholar 

  • Mahvash M, Okamura AM (2006) Friction compensation for a force-feedback telerobotic system. In: Proceedings of the IEEE international conference on robotics and automation, pp 3268–3273

    Google Scholar 

  • Milgram P, Colquhoun H Jr (1999) A taxonomy of real and virtual world display integration. In: Tamura Y (ed) Mixed reality-merging real and virtual worlds. Springer, Berlin, pp 1–16

    Google Scholar 

  • Nojima T, Sekiguchi D, Inami M, Tachi S (2002) The SmartTool: a system for augmented reality of haptics. In Proceedings of the IEEE virtual reality conference, pp 67–72

    Google Scholar 

  • Ott R, Thalmann D, Vexo F (2007) Haptic feedback in mixed-reality environment. Vis Comput: Int J Comput Graph 23(9):843–849

    Article  Google Scholar 

  • Sandor C, Uchiyama S, Yamamoto H (2007) Visuo-haptic systems: half-mirrors considered harmful. In: Proceedings of the world haptics conference, pp 292–297

    Google Scholar 

  • Scharver C, Evenhouse R, Johnson A, Leigh J (2004) Designing cranial implants in a haptic augmented reality environment. Commun ACM 47(8):32–38

    Article  Google Scholar 

  • Vallino JR, Brown CM (1999) Haptics in augmented reality. In: Proceedings of the IEEE international conference on multimedia computing and systems, pp 195–200

    Google Scholar 

  • Visell Y, Law A, Cooperstock J (2009) Touch is everywhere: floor surfaces as ambient haptic interfaces. IEEE Trans Haptics 2(3):148–159

    Article  Google Scholar 

  • Yao H-Y, Hayward V, Ellis RE (2004) A tactile magnification instrument for minimally invasive surgery. Lect Notes Comput Sci (MICCAI) 3217:89–96

    Article  Google Scholar 

  • Ye G, Corso J, Hager G, Okamura A (2003) VisHap: augmented reality combining haptics and vision. In: Proceedings of the IEEE international conference on systems, man and cybernetics, pp 3425–3431

    Google Scholar 

Download references

Acknowledgments

The described research has been supported in parts by Korean government programs, NRL R0A-2008-000-20087-0 from NRF and ITRC (NIPA-2011-)C1090-1111-0008 from NIPA, the Korean-Swiss Science and Technology Cooperation program 2010/2011, and the EU project BEAMING 248620.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seokhee Jeon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Jeon, S., Choi, S., Harders, M. (2014). Haptic Augmentation in Soft Tissue Interaction. In: Di Luca, M. (eds) Multisensory Softness. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6533-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6533-0_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6532-3

  • Online ISBN: 978-1-4471-6533-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics