Actuator Design

  • Henry Haus
  • Thorsten A. Kern
  • Marc Matysek
  • Stephanie Sindlinger
Part of the Springer Series on Touch and Haptic Systems book series (SSTHS)


Actuators are the most important elements of every haptic device, as their selection, respectively, their design influences the quality of the haptic impression significantly. This chapter deals with frequently used actuators structured based on their physical working principle. It focuses on the electrodynamic, electromagnetic, electrostatic, and piezoelectric actuation principle. Each actuator type is discussed as to its most important physical basics, with examples of their dimensioning, and one or more applications given. Other rarely used actuation principles are mentioned in several examples. The previous chapters were focused on the basics of control-engineering and kinematic design. They covered topics of structuring and fundamental character. This and the following chapters deal with the design of technical components as parts of haptic devices. Experience teaches us that actuators for haptic applications can rarely be found “off-the-shelf”. Their requirements always include some outstanding features in rotational frequency, power density, working point, or geometry. These specialties make it necessary and helpful for their applicants to be aware of the capabilities and possibilities of modifications of existing actuators. Hence, this chapter addresses both groups of readers: users who want to choose a certain actuator and the mechanical engineer who intends to design a specific actuator for a certain device from scratch.


Piezoelectric Actuator Magnetic Circuit Ionic Polymer Metal Composite Haptic Device Electromagnetic Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahmadkhanlou F (2008) Design, modeling and control of magnetorheological fluid-based force feedback dampers for telerobotic systems. In: Proceedings of the Edward F. Hayes graduate research forum.
  2. 2.
    Asamura N, Yokoyama N, Shinoda H (1998) Selectively stimulating skin receptors for tactile display. IEEE Comput Graph Appl 18(6):32–37. ISSN: 02721716. doi: 10.1109/38.734977. (Visited on 02/09/2014)
  3. 3.
    Ballas R (2007) Piezoelectric multilayer beam bending actuators: static and dynamic behavior and aspects of sensor integration. Springer, Berlin, pp XIV, 358. ISBN: 978-3-540-32641-0Google Scholar
  4. 4.
    Bar-Cohen Y (2001) Electroactive polymer (EAP) actuators as artificial muscles–reality, potential, and challenges. SPIE Press monograph, vol 98. SPIE Press, Bellingham, pp XIV, 671. ISBN: 0-8194-4054-xGoogle Scholar
  5. 5.
    Bar-Cohen Y (2006) Biomimetics–biologically inspired technologies. CRC, Taylor und Francis, Boca Raton, pp XVIII, 527. ISBN: 0-8493-3163-3Google Scholar
  6. 6.
    Bar-Cohen Y et al (2001) Virtual reality robotic telesurgery simulations using MEMICA haptic system. In: 8th annual international symposium on smart structures and material—EAPAD. doi: 10.1117/12.432667
  7. 7.
    Bau O et al (2010) TeslaTouch: electrovibration for touch surfaces. In: Proceedings of the 23nd annual ACM symposium on user interface software and technology (UIST ’10). ACM, New York, pp 283–292. doi: 10.1145/1866029.1866074
  8. 8.
    Belford JD The stepped horn–Technical Publication TP-214. Technical report
  9. 9.
    Berkelman PJ, Butler ZJ, Hollis R L (1996) Design of a hemispherical magnetic levitation haptic interface device. In: ASME (ed) ASME international mechanical engineering congress and exposition., pp 483–488.
  10. 10.
    Bicchi A et al. (2005) Analysis and design of an electromagnetic system for the characterization of magnetorheological fluids for haptic interfaces. IEEE Trans Magn 41(5). Interdepartmental Res. Centre, Pisa University, Italy, pp 1876–1879. doi: 10.1109/TMAG.2005.846280
  11. 11.
    Bicchi A (2008) The sense of touch and its rendering—progress in haptics research, vol 45. Springer tracts in advanced robotics. Springer, Berlin, pp XV, 280. ISBN: 9783540790341Google Scholar
  12. 12.
    Biet et al M (2006) A piezoelectric tactile display using travelling lamb wave. In: Proceedings of eurohaptics. Paris, pp 989–992Google Scholar
  13. 13.
    Blume H-J, Boelcke R (1990) Mechanokutane Sprachvermittlung, vol 137. Reihe 10 137. Düsseldorf: VDI-Verl. ISBN: 3-18-143710-7Google Scholar
  14. 14.
    Böse H, Trendler A (2003) Smart fluids–properties and benefit for new electromechanical devices. In: AMAS workshop SMART’03. pp 329–336.
  15. 15.
    Böse H et al. (2004) A new haptic sensor-actuator system based on electrorheological fluids. In: Actuator 2004: 9th international conference on new actuators. HVG Hanseatische Veranst. GmbH, Div. Messe Bremen, pp 300–303. doi: 10.1016/S0531-5131(03)00443-6
  16. 16.
    Brissaud M (1991) Characterization of piezoceramics. IEEE Trans Ultrason Ferroelectr Freq Control 38(6):603–617. doi: 10.1109/58.108859 CrossRefGoogle Scholar
  17. 17.
    Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31(1):10–36. doi: 10.1002/marc.200900425. (Visited on 04/03/2012)
  18. 18.
    Carlson JD, Stanway R, Johnson AR (2004) Electro-rheological and magneto-rheological fluids: a state of the art report. In: Actuator 2004: 9th international conference on new actuators. HVG Hanseatische Veranst.-GmbH, Div. Messe Bremen, Bremen, pp 283–288Google Scholar
  19. 19.
    Carpi F, Frediani G, De Rossi D (2012) Electroactive elastomeric actuators for biomedical and bioinspired systems. In: IEEE, June 2012, pp 623–627. doi: 10.1109/BioRob.6290761. (Visited on 02/26/2014)
  20. 20.
    Casiez G et al. (2011) Surfpad: riding towards targets on a squeeze film effect. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM Press, New York, p 2491. doi: 10.1145/1978942.1979307
  21. 21.
    Chapuis D, Michel X (2007) A haptic knob with a hybrid ultrasonic motor and powder clutch actuator. In: Michel X, Gassert R (eds) Euro haptics conference, 2007 and symposium on haptic interfaces for virtual environment and teleoperator systems. World Haptics 2007. Second Joint. pp 200–205. doi: 10.1109/WHC.2007.5
  22. 22.
    Colgate JE, Peshkin M (2009) Haptic device with controlled traction forces. 8525778:B2Google Scholar
  23. 23.
    Conrad H, Fisher M, Sprecher AF (1990) Characterization of the structure of a model electrorheological fluid employing stereology. In: Proceedings of the 2nd international conference on electrorheological fluidsGoogle Scholar
  24. 24.
    Deng K, Enikov E, Zhang H, (2007) Development of a pulsed electromagnetic micro-actuator for 3D tactile displays. In:(2007) IEEE/ASME international conference on advanced intelligent mechatronics. University of Arizona, Tucson, pp 1–5. doi: 10.1109/AIM.2007.4412457
  25. 25.
    Doerrer C (2004) Entwurf eines elektromechanischen Systems für flexibel konfigurierbare Eingabefelder mit haptischer Rückmeldung". PhD thesis. Technische Universität Darmstadt, Institut für Elektromechanische Konstruktionen.
  26. 26.
    Dr. Fritz Faulhaber GmbH & Co. KG. Technical Informations. Tech. rep. 2013.
  27. 27.
    Eisner E (1966) Complete solutions of the ’Webster’ horn equation. J Acoust Soc Am 41(4B):1126–1146. doi: 10.1121/1.1910444 CrossRefGoogle Scholar
  28. 28.
    El Wahed AK et al (2003) An improved model of ER fluids in squeeze-flow through model updating of the estimated yield stress. J Sound Vibr 268(3):581–599. doi: 10.1016/S0022-460X(03)00374-2 CrossRefGoogle Scholar
  29. 29.
    Fernandez JM, Perriard Y (2003) Comparative analysis and modeling of both standing and travelling wave ultrasonic linear motor. In: IEEE ultrasonic symposium, pp 1770–1773. doi: 10.1109/ULTSYM.2003.1293255
  30. 30.
    Fleischer M, Stein D, Meixner H (1989) Ultrasonic piezomotor with longitudinally oscillating amplitude-transforming resonator. IEEE Trans Ultrason Ferroelectr Freq Control 36(6):607–613. doi: 10.1109/58.39110 CrossRefGoogle Scholar
  31. 31.
    Flueckiger M et al. (2005) fMRI compatible haptic interface actuated with traveling wave ultrasonic motor. In: Industry applications conference, 2005. Fortieth IAS annual meeting. Conference record of the 2005, vol 3. pp 2075–2082. ISBN: 0197-2618, doi: 10.1109/IAS.2005.1518734
  32. 32.
    Garrec P (2010) Design of an anthropomorphic upper limb exoskeleton actuated by ball-screws and cables. In: University politecnicae of bucharest. Sci Bull D Mech Eng 72(2):23–34. ISSN 1454–2358.
  33. 33.
    Garrec P (2010) Screw and cable actuators SCS and their applications to force feedback teleoperation, exoskeleton and anthropomorphic robotics. In: Abdellatif H (ed) Robotics 2010 current and future challenges. InTech. ISBN: 978-953-7619-78-7. (Visited on 02/09/2014)
  34. 34.
    Garrec P et al. (2006) A new force-feedback, morphologically inspired portable exoskeleton. In: IEEE, pp 674–679. doi: 10.1109/ROMAN.2006.314478. (Visited on 02/09/2014)
  35. 35.
    Garrec P et al (2007) Evaluation tests of the telerobotic system MT200-TAO in AREVA NC La Hague hot cells. In: Proceedings of ENC, Brussels.
  36. 36.
    Garrec P et al. (2008) ABLE, an innovative transparent exoskeleton for the upper-limb. In: IEEE, pp 1483–1488. doi: 10.1109/IROS.2008.4651012. (Visited on 02/09/2014)
  37. 37.
    Ghoddsi R et al (1996) Development of a tangential tactor using a LIGA/MEMS linear microactuator technology microelectromechanical system (MEMS). In: Microelectromechanical system (MEMS), DSC, vol 59. Atlanta, pp 379–386. ISBN: 978-0791815410Google Scholar
  38. 38.
    Giraud F, Giraud F, Semail B (2004) Analysis and phase control of a piezoelectric traveling-wave ultrasonic motor for haptic stick application. In: Semail B, Audren J-T (eds) IEEE Transactions on industry applications, vol 40(6), pp 1541–1549. doi: 10.1109/TIA.2004.836317
  39. 39.
    Giraud F, Lemaire-Semail B, Martinot F (2006) A force feedback device actuated by piezoelectric travelling wave ultrasonic motors. In: ACTUATOR 2006, 10th international conference on new actuators. pp 600–603. ISBN: 9783933339089Google Scholar
  40. 40.
    Gong X et al (2008) Influence of liquid phase on nanoparticle-based giant electrorheological fluid. Nanotechnol 19(16):165602. doi: 10.1088/0957-4484/19/16/165602 CrossRefGoogle Scholar
  41. 41.
    Gosline AH, Campion G, Hayward V (2006) On the use of eddy current brakes as tunable, fast turn-on viscous dampers for haptic rendering. In: Eurohaptics conference. Paris, pp 229–234.
  42. 42.
    Hagedorn P et al (1998) The importance of rotor flexibility in ultrasonic traveling wave motors. Smart Mater Struct 7:352–368. doi: 10.1088/0964-1726/7/3/010 CrossRefGoogle Scholar
  43. 43.
    Hagood NW, McFarland AJ (1995) Modeling of a piezoelectric rotary ultrasonic motor. IEEE Trans Ultrason Ferroelectr Freq Control 42(2):210–224. doi: 10.1109/58.365235 CrossRefGoogle Scholar
  44. 44.
    Haption SA (2014) (visited on 02/19/2014)
  45. 45.
    Hayward V, Cruz-Hernandez M (2000) Tactile display device using distributed lateral skin stretch. In: Wikander J (ed) Symposium on haptic interfaces for virtual environment and teleoperator systems, IMECE 2000 conference.
  46. 46.
    He S et al (1998) Standing wave bi-directional linearly moving ultrasonic motor. IEEE Trans Ultrason Ferroelectr Freq Control 45(5):1133–1139. doi: 10.1109/58.726435 CrossRefGoogle Scholar
  47. 47.
    Helin P et al (1997) Linear ultrasonic motors using surface acoustic waves mechanical model for energy transfer. In: Solid state sensors and actuators, TRANSDUCERS ’97 Chicago., 1997 international conference on, vol 2. Chicago, IL, pp 1047–1050, 16–19 June 1997. doi: 10.1109/SENSOR.1997.635369
  48. 48.
    Heydt R, Chhokar S (2003) Refreshable braille display based on electroactive polymers. In: 23rd international display research conference, pp 111–114Google Scholar
  49. 49.
    Hirata H, Ueha S (1995) Design of a traveling wave type ultrasonic motor. IEEE Trans Ultrason Ferroelectr Freq Control 42(2):225–231. doi: 10.1109/58.365236 CrossRefGoogle Scholar
  50. 50.
    Hu M et al (2005) Performance simulation of traveling wave type ultrasonic motor. In: Proceedings of the eighth international conference on electrical machines and systems, 2005. ICEMS 2005, vol 3. pp 2052–2055, 27–29 Sept 2005. ISBN: 7-5062-7407-8. doi: 10.1109/ICEMS.2005.202923
  51. 51.
    Huang X et al (2007) Formation of polarized contact layers and the giant electrorheological effect. Int J Mod Phy B (IJMPB) 21(28/29):4907–4913. doi: 10.1142/S0217979207045827 CrossRefGoogle Scholar
  52. 52.
    Huber J, Fleck N, Ashby M (1997) The selection of mechanical actuators based on performance indices. In: Proceedings of the Royal Society of London. Series A: Mathematical, physical and engineering sciences, vol 453. 1965, pp 2185–2205. doi: 10.1098/rspa.1997.0117
  53. 53.
    Hudin C, Lozada J, Hayward V (2013) Localized tactile stimulation by time-reversal of flexural waves: case study with a thin sheet of glass. In: IEEE, pp 67–72. doi: 10.1109/WHC.2013.6548386
  54. 54.
    HyperBraille. (visited on 02/09/2014)
  55. 55.
    IEEE (1988) Standard on piezoelectrity. doi: 10.1109/IEEESTD.1988.79638
  56. 56.
    Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, Oxford, pp XI, 263. ISBN: 0-19-856339-6Google Scholar
  57. 57.
    Ikei Y, Ikei Y, Shiratori M (2002) TextureExplorer: a tactile and force display for virtual textures. In: Haptic interfaces for virtual environment and teleoperator systems. In: Shiratori M (ed) 10th symposium on HAP TICS 2002. Proceedings, pp 327–334. doi: 10.1109/HAPTIC.2002.998976
  58. 58.
    Ikei Y, Yamada M, Fukuda S (1999) Tactile texture presentation by vibratory pin arrays based on surface height maps. In: Olgac N (ed) ASME dynamic systems and control division. 67:97–102. ISBN: 0791816346Google Scholar
  59. 59.
    Iwamoto T, Tatezono M, Shinoda H (2008) Non-contact method for producing tactile sensation using airborne ultrasound. In: Haptics: perception, devices and scenarios. Springer, Berlin, pp 504–513. doi: 10.1007/978-3-540-69057-3_64
  60. 60.
    Iwamoto T, Shinoda H (2005) Ultrasound tactile display for stress field reproduction–examination of non-vibratory tactile apparent movement. In: First joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. WHC 2005, pp 220–228. doi: 10.1109/WHC.2005.140
  61. 61.
    Jendritza DJ (1998) Technischer einsatz neuer aktoren: grundlagen, werkstoffe, designregeln und anwendungsbeispiele. 2nd ed. vol 484. Kontakt Studium 484. Renningen-Malmsheim: expert-Verl., p 493. ISBN: 3-8169-1589-2Google Scholar
  62. 62.
    Jolly MR, Carlson JD (1996) Controllable squeeze film damping using magnetorheological fluid. In: Actuator 96, 5th international conference on New Actuators, BremenGoogle Scholar
  63. 63.
    Jungmann M (2004) Entwicklung elektrostatischer festkörperaktoren mit elastischen dielektrika für den einsatz in taktilen anzeigefeldern. Technische Universität Darmstadt, Dissertation, p 138.
  64. 64.
    Kajimoto H, Kanno Y, Tachi S (2006) Forehead electro-tactile display for vision substitution. In: Eurohaptics conference. Paris.
  65. 65.
    Kallenbach E, Stölting H-D, Amrhein W (eds) (2008) Handbook of fractional-horsepower drives. Springer, Berlin. ISBN: 978-3-540-73128-3Google Scholar
  66. 66.
    Kallenbach E et al (2008) Elektromagnete-Grundlagen, Berechnung, Entwurf und Anwendung. Wiesbaden: Vieweg+Teubner, pp XII, 402. ISBN: 978-3-8351-0138-8Google Scholar
  67. 67.
    Kenaley GL, Cutkosky MR (1989) Electrorheological fluid-based robotic fingers with tactile sensing. In: IEEE international conference on robotics and automation. Proceedings, vol 1. pp 132–136. doi: 10.1109/ROBOT.1989.99979
  68. 68.
    Kim S-C, Israr A, Poupyrev I (2013) Tactile rendering of 3D features on touch surfaces. In: ACM Press, pp 531–538. doi: 10.1145/2501988.2502020. (Visited on 02/17/2014)
  69. 69.
    Kim KJ, Tadokoro S (2007) Electroactive polymers for robotic applications—artificial muscles and sensors. Springer, LondonCrossRefGoogle Scholar
  70. 70.
    Kornbluh R et al. (1999) High-Field electrostriction of elastomeric polymer dielectrics for actuation. In: 6th annual international symposium on smart structures and material—EAPAD, pp 149–161. doi: 10.1117/12.349672
  71. 71.
    Kornbluh R, Pelrine R (1998) Electrostrictive polymer artificial muscle actuators. IEEE Int Conf Robotics Autom 3:2147–2154. doi: 10.1109/ROBOT.1998.680638 CrossRefGoogle Scholar
  72. 72.
    Koyama T, Takemura K (2003) Development of an ultrasonic clutch for multi-fingered exoskeleton haptic device using passive force feedback for dexterous teleoperation. In: Takemura K, Maeno T (eds) Intelligent robots and systems. (IROS 2003). Proceedings. 2003 IEEE/RSJ international conference on, vol 3, pp 2229–2234. doi: 10.1109/IROS.2003.1249202
  73. 73.
    Kyung K-U, Lee JY (2007) Haptic stylus and empirical studies on braille, button, and texture display. J Biomed Biotechnol 2008(369651):11. doi: 10.1155/2008/369651 Google Scholar
  74. 74.
    Kyung K-U, Park J-S (2007) Ubi-pen: development of a compact tactile display module and its application to a haptic stylus. In: Park J-S (ed) EuroHaptics conference, 2007 and symposium on haptic interfaces for virtual environment and teleoperator systems. World Haptics 2007. Second Joint. pp 109–114. doi: 10.1109/WHC.2007.121
  75. 75.
    Kyung K-U, Ahn M (2005) A compact broadband tactile display and its effectiveness in the display of tactile form. In: Ahn M, Kwon D-S (eds) Eurohaptics conference, 2005 and symposium on haptic interfaces for virtual environment and teleoperator systems. World Haptics 2005. First Joint, pp 600–601. doi: 10.1109/WHC.2005.4
  76. 76.
    Lawrence D, Pao L, Aphanuphong S (2005) Bow spring/tendon actuation for low cost haptic interfaces. In: Haptic interfaces for virtual environment and teleoperator systems. WHC 2005. First joint eurohaptics conference and symposium on (2005). Aerospace Engineering. Colorado University, Boulder, pp 157–166. doi: 10.1109/WHC.2005.26
  77. 77.
    Lenk A et al (eds) (2011) Electromechanical systems in microtechnology and mechatronics: electrical, mechanical and acoustic networks, their interactions and applications. Springer, Heidelberg. ISBN: 978-3-642-10806-8Google Scholar
  78. 78.
    Leondes CT (2006) MEMS/NEMS–handbook techniques and applications. Springer, New York. ISBN 0-387-24520-0Google Scholar
  79. 79.
    Levesque V, Levesque V, Pasquero J (2007) Braille display by lateral skin deformation with the STReSS2 tactile transducer. In: Pasquero J, Hayward V (eds) EuroHaptics conference, 2007 and symposium on haptic interfaces for virtual environment and teleoperator systems. World Haptics 2007. Second Joint, pp 115–120. doi: 10.1109/WHC.2007.25
  80. 80.
    Li WH et al (2004) Magnetorheological fluids based haptic device. Sensor Rev 24(1):68–73. doi: 10.1108/02602280410515842 CrossRefGoogle Scholar
  81. 81.
    Lotz P, Matysek M, Schlaak HF (2011) Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans Mech 16(1):58–66. doi: 10.1109/TMECH.2010.2090164. (Visited on 04/11/2012)
  82. 82.
    Makino Y, Asamura N, Shinoda H (2003) A cutaneous feeling display using suction pressure. In: SICE 2003 annual conference (IEEE Cat. No.03TH8734). SICE 2003 annual conference, vol 3. Society of Instrument and Control Engineers, Fukui, Japan. Tokyo, Japan, pp 2931–2934. 4–6 Aug 2003. ISBN: 0-7803-8352-4Google Scholar
  83. 83.
    Marchuk N, Colgate J, Peshkin M (2010) Friction measurements on a large area TPaD. In: Haptics symposium, 2010 IEEE, pp 317–320. doi: 10.1109/HAPTIC.2010.5444636
  84. 84.
    Matysek M, Lotz P, Schlaak H (2011) Lifetime investigation of dielectric elastomer stack actuators. IEEE Trans Dielectrics Electr Insul 18(1):89–96. doi: 10.1109/TDEI.2011.5704497 (Visited on 04/10/2012)
  85. 85.
    Matysek M et al (2011) Combined driving and sensing circuitry for dielectric elastomer actuators in mobile applications. In: Proceedings of SPIE. vol 7976. San Diego. doi: 10.1117/12.879438. (Visited on 03/29/2012)
  86. 86.
    Mehling J, Colgate J, Peshkin M (2005) Increasing the impedance range of a haptic display by adding electrical damping. In: Eurohaptics conference, 2005 and symposium on haptic interfaces for virtual environment and teleoperator systems. World haptics 2005. First Joint. NASA Johnson Space Center, Houston, pp 257–262. doi: 10.1109/WHC.2005.79
  87. 87.
    Metec AG. (Visited on 02/09/2014)
  88. 88.
    Mohand-Ousaid A et al (2012) Haptic interface transparency achieved through viscous coupling. Int J Rob Res 1(3):319–329CrossRefGoogle Scholar
  89. 89.
    Mößinger H et al (2014) Tactile feedback to the palm using arbitrarily shaped DEA. In: Proceedings of SPIE, vol 9056. SPIE, San Diego. doi: 10.1117/12.2045302
  90. 90.
    Moy G, Wagner C, Fearing R (2014) A compliant tactile display for teletaction. IEEE 4:3409–3415. doi: 10.1109/ROBOT.2000.845247. (Visited on 02/09/2014)
  91. 91.
    Moy G (2002) Bidigital teletaction system design and performance. PhD thesis. University of California at Berkeley.
  92. 92.
    Murayama J et al (2004) SPIDAR G&G: two-handed haptic interface for bimanual VR interaction. In: Eurohaptics, vol 1. 1. Universität München, München, pp 138–146Google Scholar
  93. 93.
    Niu X et al (2011) Refreshable tactile displays based on bistable electroactive polymer. In: Proceedings of SPIE, vol 7976. doi: 10.1117/12.880185
  94. 94.
    Niu X et al (2012) Bistable electroactive polymer for refreshable Braille display with improved actuation stability. In: Proceedings of SPIE, vol 8340. doi: 10.1117/12.915069
  95. 95.
    Nührmann D (1998) Das große Werkbuch Elektronik. 7. Poing: Franzis’ Verlag. ISBN: 3772365477Google Scholar
  96. 96.
    Olsson P et al (2012) Rendering stiffness with a prototype haptic glove actuated by an integrated piezoelectric motor. In: Haptics: perception, devices, mobility, and communication. Springer, Berlin, pp 361–372. doi: 10.1007/978-3-642-31401-8_33
  97. 97.
    Parthasarathy M, Klingenberg DJ (1996) Electrorheology: mechanisms and models. Mater Sci Eng R Rep 17(2):57–103. doi: 10.1016/0927-796X(96)00191-X CrossRefGoogle Scholar
  98. 98.
    Pei Q et al (2003) Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots. In: Proceedings of SPIE, vol 5051. [31]. pp 281–290. doi: 10.1117/12.484392
  99. 99.
    Pelrine R, Kornbluh R (2008) Electromechanical transduction effects in dielectric elastomers: actuation, sensing, stiffness modulation and electric energy generation. In: Carpi F et al (eds) Dielectric elastomers as electromechanical transducers. 1st edn. Elsevier, Amsterdam, p 344. doi: 10.1016/B978-0-08-047488-5.00001-0
  100. 100.
    Phillips RW (1969) Engineering applications of fluids with a variable yield stress. PhD thesis. University of California, BerkeleyGoogle Scholar
  101. 101.
    Physik Instrumete PI GmbH & Co KG (2003) Piezo linear driving mechanism for converting electrical energy into motion, has a group of stacking actuators for driving a rotor in a guiding mechanismGoogle Scholar
  102. 102.
    Polzin J (2013) Entwurf einer Deltakinematik als angepasste Struktur für die haptische Bedieneinheit eines Chirurgieroboters. Bachelor Thesis. Technische Universität Darmstadt, Institut für Elektromechanische KonstruktionenGoogle Scholar
  103. 103.
    Popov D, Gaponov I, Ryu J-H (2013) A preliminary study on a twisted strings-based elbow exoskeleton. In: World haptics conference (WHC), 2013. IEEE, pp 479–484. doi: 10.1109/WHC.2013.6548455
  104. 104.
    Pott PP et al (2013) Seriell-Elastische Aktoren als Antrieb für aktive Orthesen. In: at-Automatisierungstechnik, vol 61, pp 638–644. doi: 10.1524/auto.2013.0053
  105. 105.
    Rajagopal KR, Ruzicka M (2001) Mathematical modeling of electrorheological materials. Continuum Mech Thermodyn 13(1):59–78. doi: 10.1007/s001610100034 CrossRefMATHGoogle Scholar
  106. 106.
    Redux Laboratories. (visited on 02/19/2014)
  107. 107.
    Ren K et al (2008) A compact electroactive polymer actuator suitable for refreshable Braille display. Sens Actuators A Phys 143(2):335–342. doi: 10.1016/j.sna.2007.10.083 CrossRefGoogle Scholar
  108. 108.
    Sattel T (2003) Dynamics of ultrasonic motors. Dissertation. Technische Universität Darmstadt, pp IV, 167.
  109. 109.
    Schimkat J et al. (1994) Moving wedge actuator: an electrostatic actuator for use in a microrelay. In: MICRO SYSTEM technologies ’94, 4th international conference and exhibition on micro, electro, opto, mechanical systems and components. VDE-Verlag, pp 989–996.Google Scholar
  110. 110.
    Senkal D, Gurocak H (2011) Haptic joystick with hybrid actuator using air muscles and spherical MR-brake. Mechatronics 21(6):951–960. doi: 10.1016/j.mechatronics.2011.03.001 CrossRefGoogle Scholar
  111. 111.
    Sheng P (2005) Mechanism of the giant electrorheological effect. Int J Modern Phys B (IJMPB) 19(7/9):1157–1162. doi: 10.1016/j.ssc.2006.04.042 CrossRefGoogle Scholar
  112. 112.
    Sherrit S et al (1999) Modeling of horns for sonic/ultrasonic applications. In: Ultrasonics symposium. Proceedings. IEEE 1:647–651. doi: 10.1109/ULTSYM.1999.849482
  113. 113.
    Shima T, Takemura K (2012) An ungrounded pulling force feedback device using periodical vibrationimpact. In: Haptics: perception, devices, mobility, and communication. Springer, Berlin, pp 481–492. doi: 10.1007/978-3-642-31401-8_43
  114. 114.
    Sindlinger S (2011) Haptische Darstellung von Interaktionskräften in einem Assistenzsystem für Herzkatheterisierungen. Dissertation. Technische Universität Darmstadt.
  115. 115.
    Streque J et al (2012) Magnetostatic micro-actuator based on ultrasoft elastomeric membrane and copper—permalloy electrodeposited Structures. In: IEEE international conference on micro electro mechanical systems (MEMS). Paris, pp 1157–1160. doi: 10.1109/MEMSYS.2012.6170368
  116. 116.
    Summers IR, Chanter CM (2002) A broadband tactile array on the fingertip. J Acoust Soc Am 112(5):2118–2126. doi: 10.1121/1.1510140 CrossRefGoogle Scholar
  117. 117.
    Takamatsu R, Taniguchi T, Sato M (1998) Space browsing interface based on head posture information. In: Computer human interaction, 1998. Proceedings. 3rd Asia Pacific, pp 298–303. ISBN: 0-8186-8347-3Google Scholar
  118. 118.
    Takasaki M, Kuribayashi Kurosawa M, Higuchi T (2000) Optimum contact conditions for miniaturized surface acoustic wave linear motor. In: Ultrasonics 38:1–8, pp 51–53. doi: 10.1016/S0041-624X(99)00093-1
  119. 119.
    Tang H, Beebe DJ (1998) A microfabricated electrostatic haptic display for persons with visual impairments. Rehabilitation Engineering. IEEE Trans Neural Syst Rehabil 6(3):241–248. doi: 10.1109/86.712216
  120. 120.
    Taylor P (1997) The design and control of a tactile display based on shape memory alloys. In: Developments in tactile displays (Digest No. 1997/012), IEEE Colloquium on, vol 1997. doi: 10.1049/ic:19970080
  121. 121.
    Taylor PM et al (1998) Advances in an electrorheological fluid based tactile array. Displays 18(3):135–141. doi: 10.1016/S0141-9382(98)00014-6 CrossRefGoogle Scholar
  122. 122.
    Tietze U, Schenk C (2002) Halbleiter-Schaltungstechnik. 12th edn. Springer, Berlin, pp. XXV, 1606. ISBN: 3-540-42849-6Google Scholar
  123. 123.
    Tsagarakis N, Horne T, Caldwell D (2005) SLIP AESTHEASIS: a portable 2D slip/skin stretch display for the fingertip. In: First joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. WHC 2005. pp 214–219. doi: 10.1109/WHC.2005.117
  124. 124.
    Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer, Boston, pp VIII, 349. ISBN: 9780792398110Google Scholar
  125. 125.
    Uchino K, Giniewicz JR (2003) Micromechatronics. Materials engineering, vol 22. Dekker, New York, pp XIV, 489. ISBN: 0-8247-4109-9Google Scholar
  126. 126.
    Uhea S et al (1996) Ultrasonic motors—theory and application. Oxford University Press, OxfordGoogle Scholar
  127. 127.
    Uhea S (2003) Recent development of ultrasonic actuators, vol 1. Ultrasonics symposium, 2001 IEEE. Atlanta, 7–10 Oct 2001, vol 1, pp 513–520. doi: 10.1109/ULTSYM.2001.991675
  128. 128.
    Vidal-Verdú F, Navas-González R (2004) Thermopneumatic approach for tactile displays. In: Mechatronics & robotics. Aachen, Germany, pp 394–399. ISBN: 3-938153-30-X. doi: 10.1117/12.607603
  129. 129.
    Vitrani MA et al (2006) Torque control of electrorheological fluidic resistive actuators for haptic vehicular instrument controls. J Dyn Syst Measur Control 128(2):216–226. doi: 10.1115/1.2192822.
  130. 130.
    Völkel T, Weber G, Baumann U (2008) Tactile graphics revised: the novel brailledis 9000 pin-matrix device with multitouch input. In: Computers Helping People with Special Needs. Springer, Berlin, pp 835–842. doi: 10.1007/978-3-540-70540-6_124
  131. 131.
    von Zitzewitz J (2011) R3—A reconfigurable rope robot as a versatile haptic interface for a cave automatic virtual environment. Dissertation. ETH ZürichGoogle Scholar
  132. 132.
    Wahed AK (2004) The characteristics of a homogeneous electrorheological fluid in dynamic squeeze. In: Actuator 2004: 9th international conference on new actuators. Bremen, pp 605–608Google Scholar
  133. 133.
    Wallaschek J (1998) Contact mechanics of piezoelectric ultrasonic motors. Smart Mater Struct 3:369–381. doi: 10.1088/0964-1726/7/3/011 CrossRefGoogle Scholar
  134. 134.
    Wang Q, Hayward V (2010) Biomechanically optimized distributed tactile transducer based on lateral skin deformation. Int J Robot Res 29(4):323–335. doi: 10.1177/0278364909345289 CrossRefGoogle Scholar
  135. 135.
    Weaver W, Timosenko SP, Young DH (1990) Vibration problems in engineering, 5th edn. Wiley, New York, pp XIII, 610. ISBN: 0-471-63228-7Google Scholar
  136. 136.
    Weinberg B et al (2005) Development of electro-rheological fluidic resistive actuators for haptic vehicular instrument controls. Smart Mater Struct 14(6):1107–1119. doi: 10.1088/0964-1726/14/6/003 CrossRefGoogle Scholar
  137. 137.
    Wen W, Huang X, Sheng P (2004) Particle size scaling of the giant electrorheological effect. Appl Phys Lett 85(2):299–301. doi: 10.1063/1.1772859 CrossRefGoogle Scholar
  138. 138.
    Williamson MM (1995) Series elastic actuators. Master Thesis. Massachusetts Institute of Technology.
  139. 139.
    Winfield L et al (2007) T-PaD: tactile pattern display through variable friction reduction. In: IEEE, pp 421–426. doi: 10.1109/WHC.2007.105. (Visited on 01/17/2014)
  140. 140.
    Würtz T et al (2010) The twisted string actuation system: modeling and control. In: IEEE/ASME international conference on IEEE/ASME international conference on advanced intelligent mechatronics (AIM). IEEE, pp 1215–1220. doi: 10.1109/AIM.2010.5695720
  141. 141.
    Yu O, Zharri (1994) An exact mathematical model of a travelling wave ultrasonic motor, vol 1. Ultrasonics symposium. Proceedings, 1994 IEEE. Cannes, 1–4 Nov 1994, pp 545–548. vol 1. doi: 10.1109/ULTSYM.1994.401647
  142. 142.
    Zhu M (2004) Contact analysis and mathematical modeling of traveling wave ultrasonic motors. In: IEEE transactions on ultrasonics, ferroelectrics and frequency control, vol 51, pp 668–679. ISBN: 0885-3010. 6 June 2004Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Henry Haus
    • 1
  • Thorsten A. Kern
    • 2
  • Marc Matysek
    • 3
  • Stephanie Sindlinger
    • 4
  1. 1.Institute of Electromechanical DesignTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Continental Automotive GmbHBabenhausenGermany
  3. 3.Continental Automotive GmbHBabenhausenGermany
  4. 4.Roche Diagnostics GmbHMannheimGermany

Personalised recommendations