Skip to main content

Identification of Requirements

  • Chapter
  • First Online:
Engineering Haptic Devices

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

In this chapter, the process of requirement definition is described, starting with the definition of the intended application together with the customer. In particular, the derivation of technical parameters from the customers’ expectation and useful tools for this step are discussed. Further, the analysis of the intended interaction and the effects on the requirement identification are discussed. To alleviate the identification of requirements, main requirement groups are derived from the intended type of interaction and presented in five technical solution clusters. A review of the relevant standards and guidelines on safety serves as another source of requirements of a haptic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As the information includes only one parameter.

  2. 2.

    A tool interaction can be a one-dimensional task, but such an assignment concerning the technical complexity can be regarded as an exception.

  3. 3.

    In the case of a finger movement, it has to be noted that not necessarily all movement directions have to be equipped with haptic feedback to provide an adequate interaction capability. Frequently, it is even sufficient to provide the grasp movement with haptic feedback, solely.

  4. 4.

    Frequently, the customer will not be able to specify these values directly. In this case, creative variants of the question should be asked, e.g., by identifying the moving masses, or by taking measurements with one’s own tools.

  5. 5.

    The haptic interaction with objects in a mathematical abstraction always is an interaction with vector fields. In the vectors, forces of surfaces are coded, which themselves are time dependent, e.g., from movements and/or deformations of the objects themselves.

References

  1. Acker A (2011) Anwendungspotential von Telepräsenz-und Teleaktionssystemen für die Präzisionsmontage. Dissertation. Technische Universität München. URL: http://mediatum.ub.tum.de/doc/1007163/1007163.pdf

  2. Bhattacharjee HK et al (2011) A novel single-port technique for transanal rectosigmoid resection and colorectal anastomosis on an ex vivo experimental model. Surg endosc 25(6):1844–1857. doi:10.1007/s00464-010-1476-1

    Article  Google Scholar 

  3. Deml B (2004) Telepräsenzsysteme: Gestaltung der Mensch-Maschine-Schnittstelle. Dissertation. Universität der Bundeswehr, München, URL: http://d-nb.info/972737340

  4. Deml B (2007) Human factors issues on the design of telepresence systems. Presence: Teleoperators Virtual Environ 16(5):471–487. doi:10.1162/pres.16.5.471

    Article  Google Scholar 

  5. van Erp J et al. (2004) Vibrotactile waypoint navigation at sea and in the air: two case studies. In: TU-Muenchen (ed) pp 166–173. URL: http://www.eurohaptics.vision.ee.ethz.ch/2004/15f.pdf

  6. Hatzfeld C (2013) Experimentelle Analyse der menschlichen Kraftwahrnehmung als ingenieurtechnische Entwurfsgrundlage für haptische Systeme. Dissertation, Technische Universität Darmstadt. http://tuprints.ulb.tu-darmstadt.de/3392/., Dr. Hut Verlag, München. ISBN: 978-3-8439-1033-0

  7. Hatzfeld C, Neupert C, Werthschützky R (2013) Systematic consideration of haptic perception in the design of task-specific haptic systems. Biomed Tech 58. doi:10.1515/bmt-2013-4227

  8. Janschek K (2012) Mechatronic systems design: methods, models, concepts. Springer, Berlin. ISBN: 978-3- 642-17531-2

    Google Scholar 

  9. Magnusson C, Brewster S (2008) Guidelines for haptic Lo-Fi prototyping. conference workshop, NordiCHI. URL: http://www.haptimap.org/organized-events/nordichi-2008-workshop.html

  10. Matich S et al (2013) A new 4 DOF parallel kinematic structure for use in a single port robotic instrument with haptic feedback. Biomed Tech 58:1. doi:10.1515/bmt-2013-4403

    Google Scholar 

  11. Matich S et al (2013) Teleoperation system with haptic feedback for single insicion surgery—concept and system design. In: CARS proceedings. Heidelberg

    Google Scholar 

  12. Muñoz L, Ponsa P, Casals A (2012) Design and development of a guideline for ergonomic haptic interaction. In: Human-computer systems interaction: backgrounds and applications 2, Springer, pp 15–29. doi:10.1007/978-3-642-23172-8_2

  13. Neupert C et al (2013) New device for ergonomic control of a surgical Robot with 4 DOF including haptic feedback. Biomed Tech 58. doi:10.1515/bmt-2013-4404

  14. Nitsch V (2012) Haptic human-machine interaction in teleoperation systems: implications for the design and effective use of haptic interfaces. Südwestdeutscher Verlag für Hochschulschriften. ISBN: 978-3838132686

    Google Scholar 

  15. Nitsch V, Färber B (2012) A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems. IEEE Trans Haptics 6:387–398. doi:10.1109/ToH.2012.62

    Article  Google Scholar 

  16. Oakley I et al (2002) Guidelines for the design of haptic widgets. English. In: People and computers XVI—memorable yet invisible. Springer, Berlin, pp 195–211. doi:10.1007/978-1-4471-0105-5_12

  17. Pahl G, Wallace K, Blessing L (2007) Engineering design: a systematic approach. Springer. ISBN: 978-3540199175

    Google Scholar 

  18. Schloske A (2010) Funktionale Sicherheit und deren praktische Umsetzung nach IEC 61508 und ISO CD 26262. In: Fachverband Elektronik-Design —FED: Integration und Effizienz–notwendig und möglich: Konferenzband zur 18. FED-Konferenz “Elektronik-Design—Leiterplatten—Baugruppen”. URL: http://publica.fraunhofer.de/documents/N-151095.html

  19. Sjöström C (2002) Non-visual haptic interaction design-guidelines and applications. Dissertation. Lund University. URL: http://lup.lub.lu.se/record/464997

  20. Tavakoli M et al. (2008) Haptics for teleoperated surgical robotic systems. World Scientific Publishing. ISBN: 978-981-281-315-2

    Google Scholar 

  21. van Erp J (2005) Vibrotactile spatial acuity on the torso: effects of location and timing parameters. In: Haptic interfaces for virtual environment and teleoperator systems. WHC 2005. First joint Eurohaptics conference and symposium on (2005), pp 80–85. doi:10.1109/WHC.2005.144

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten A. Kern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Kern, T.A., Hatzfeld, C. (2014). Identification of Requirements. In: Hatzfeld, C., Kern, T. (eds) Engineering Haptic Devices. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6518-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6518-7_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6517-0

  • Online ISBN: 978-1-4471-6518-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics