Skip to main content

The User’s Role in Haptic System Design

  • Chapter
  • First Online:
Engineering Haptic Devices

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

A good mechanical design has to consider the user in his or her mechanical properties. The first part of this chapter deals with the discussion of the user as a mechanical load on the haptic device. The corresponding model is split into two independent elements depending on the frequency range of the oscillation. Methods and measurement setups for the derivation of mechanical impedance of the user are reviewed, and a thorough analysis of impedance for different grip configurations is presented. In the second part of the chapter, the user is considered as the ultimate measure of quality for a haptic system. The relation of psychophysical parameters like the absolute threshold or the JND to engineering quality measures like resolution, errors, and reproducibility is described and application depending quality measures like haptic transparency are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    8 Hz corresponds to a typing speed of 480 keystrokes per minute. Four hundred keystrokes are regarded as very good for a professional typist, 300–200 keystrokes are good, and 100 keystrokes can be achieved by most laymen.

  2. 2.

    \(K\), a variable chosen completely arbitrarily, is a helpful construct for understanding block diagrams rather than having a real neurological analogy.

  3. 3.

    Thumb: 4 DoF, index finger: 3 DoF, middle finger: 2 DoF (sometimes 3 DoF), ring finger: 2 DoF, small finger: 2 DoF, wrist: 2 DoF. The rotation of the whole hand happens in the forearm and therefore does not count among the degrees of freedom of the hand itself.

References

  1. Brownjohn J et al (1980) Errors in mechanical impedance data obtained with impedance heads. J Sound Vibr 73(3):461–468. doi:10.1016/0022-460X(80)90527-1

    Article  Google Scholar 

  2. Bullinger H-J (1978) Einflußfaktoren und Vorgehensweise bei der ergonomischen Arbeitsmittelgestaltung. Universität tuttgart, Habilitation

    Google Scholar 

  3. Feix T (2012) Human grasping database. Letzter Abruf. 20.3.2012. http://grasp.xief.net

  4. Feix T et al (2009) A comprehensive grasp taxonomy. In: Robotics, science and systems conference: workshop on understanding the human hand for advancing robotic manipulation. http://grasp.xief.net/documents/abstract.pdf

  5. Fu C-Y, Oliver M (2005) Direct measurement of index finger mechanical impedance at low force. In: Eurohaptics conference, and symposium on haptic interfaces for virtual environment and teleoperator systems. World haptics 2005. First joint. Embedded systems and physical science center, Motorola Labs., USA, pp 657–659. doi:10.1109/WHC.2005.40

  6. Fung Y-C (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York [u.a.], p XVIII, 568. ISBN: 0-387-97947-6, 3-540-97947-6

    Google Scholar 

  7. Hajian AZ, Howe RD (1997) Identification of the mechanical impedance at the human finger tip. J Biomech Eng 119:109–114. doi:10.1115/1.2796052

    Article  Google Scholar 

  8. Hannaford B, Anderson R (1988) Experimental and simulation studies of hard contact in force reflecting teleoperation. In: IEEE international conference on robotics and automation, vol 1. Jet Propulsion Lab., Caltech, Pasadena, CA, USA, pp 584–589. doi:10.1109/ROBOT.1988.12114

  9. Hatzfeld C (2013) Experimentelle analyse der menschlichen Kraftwahrnehmung als ingenieurtechnische Entwurfsgrundlage für haptische Systeme. Dissertation, Technische Universität Darmstadt. http://tuprints.ulb.tu-darmstadt.de/3392/. München: Dr. Hut Verlag. ISBN: 978-3-8439-1033-0

  10. Hatzfeld C, Neupert C, Werthschützky R (2013) Systematic consideration of haptic perception in the design of task-specific haptic systems. Biomed Tech 58. doi:10.1515/bmt-2013-4227

  11. Israr A, Choi S, Tan HZ (2006) Detection threshold and mechanical impedance of the hand in a pen-hold posture. In: International conference on intelligent robots and systems (IROS), Peking, pp 472–477. doi: 10.1109/IROS.2006.282353

  12. Israr A, Choi S, Tan HZ (2007) Mechanical impedance of the hand holding a spherical tool at threshold and suprathreshold stimulation levels. In: Second joint EuroHaptics conference and symposium on Haptic interfaces for virtual environment and teleoperator systems (WorldHaptics conference), Tsukaba. doi:10.1109/WHC.2007.81

  13. Jones L, Lederman S (2006) Human hand function. Oxford University Press, Oxford. ISBN: 0195173155

    Google Scholar 

  14. Jungmann M, Schlaak HF (2002) Taktiles Display mit elektrostatischen Polymeraktoren. In: Konferenzband des 47. Internationalen Wissenschaftlichen Kolloquiums, Technische Universität Ilmenau. http://tubiblio.ulb.tu-darmstadt.de/17485/

  15. Jungmann M (2004) Entwicklung elektrostatischer Festkörperaktoren mit elastischen Dielektrika für den Einsatz in taktilen Anzeigefeldern. Dissertation, Technische Universität Darmstadt, p 138. http://tuprints.ulb.tu-darmstadt.de/500/

  16. Kern T et al (2006) Study of the influence of varying diameter and grasp-forces on mechanical impedance for the grasp of cylindrical objects. In: Proceedings of the Eurohaptics conference, Paris. doi:10.1007/978-3-540-69057-3_21

  17. Kunstmann C (1999) Handhabungssystem mit optimierter Mensch-Maschine-Schnittstelle für die Mikromontage. VDI-Verlag, Düsseldorf. ISBN: 978-3-642-57024-7

    Google Scholar 

  18. Milner TE, Franklin DW (1998) Characterization of multijoint finger stiffness: dependence on finger posture and force direction. IEEE Trans Biomed Eng 43(11):1363–1375. doi:10.1109/10.725333

  19. Oguztoreli MN, Stein RB (1990) Optimal task performance of antagonistic muscles. Biol Cybern 64(2):87–94. doi:10.1007/BF02331337

    Article  MathSciNet  Google Scholar 

  20. Salisbury C et al (2011) What you can’t feel won’t hurt you: evaluating haptic hardware using a haptic contrast sensitivity function. IEEE Trans Haptics 4(2):134–146. doi:10.1109/TOH.2011.5

    Article  Google Scholar 

  21. Serina Elaine R, Mote C, Rempel D (1997) Force response of the fingertip pulp to repeated compression—effects of loading rate, loading angle and anthropometry. J Biomech 30(10):1035–1040. doi:10.1016/S0021-9290(97)00065-1

  22. Wiertlewski M, Hayward V (2012) Mechanical behavior of the fingertip in the range of frequencies and displacements relevant to touch. J Biomech 45(11):1869–1874. doi:10.1016/j.jbiomech.2012.05.045

    Article  Google Scholar 

  23. Yoshikawa T, Ichinoo Y (2003) Impedance identification of human fingers using virtual task environment. In: IEEE/RSJ international conference on intelligent robots and systems (IROS 2003), vol 3, pp 3094–3099. doi:10.1109/IROS.2003.1249632

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten A. Kern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Kern, T.A., Hatzfeld, C. (2014). The User’s Role in Haptic System Design. In: Hatzfeld, C., Kern, T. (eds) Engineering Haptic Devices. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6518-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6518-7_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6517-0

  • Online ISBN: 978-1-4471-6518-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics