Skip to main content

Haptics as an Interaction Modality

  • Chapter
  • First Online:
Engineering Haptic Devices

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

This chapter focuses on the biological and behavioral basics of the haptic modality. On one side, several concepts for describing interaction are presented in Sect. 2.2, and on the other side, the physiological and psychophysical bases of haptic perception are discussed in Sect. 2.1. The goal of this chapter is to provide a common basis to describe interactions and to convey a basic understanding of perception, and the description via psychophysical parameters. Both aspects are relevant to the formal description of the purpose of a haptic system and the derivation of requirements, which are further explained in Chap. 5. Several conclusions arising from the description of perception and interaction are given in Sect. 2.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An elaborate derivation can be found in [56, Chap. 1].

  2. 2.

    Unfortunately, the number of test subjects involved in the studies is not reported.

References

  1. Acker A (2011) Anwendungspotential von Telepräsenz-und Teleaktionssystemen für die Präzisionsmontage. Dissertation. Technische Universität München. http://mediatum.ub.tum.de/doc/1007163/1007163.pdf

  2. Adams M (2011) Project summary nanobiotact. Technical Report EU FP6

    Google Scholar 

  3. Allerkamp D et al (2007) A vibrotactile approach to tactile rendering. Vis Comput 23(2):97–108. doi:10.1007/s00371-006-0031-5

    Article  Google Scholar 

  4. Allin S, Matsuoka Y, Klatzky R (2002) Measuring just noticeable differences for haptic force feedback: implications for rehabilitation. In: Proceedings of the 10th symposium on haptic interfaces for virtual environments & teleoperator systems. Orlando, FL, USA. doi:10.1109/HAPTIC.2002.998972

  5. An L, Askew, Chao E (1986) Biomechanics and functional assessment of upper extremities. In: Karwowski W (ed) Trends in ergonomics/human factors III. Elsevier, North-Holland, pp 573–580. ISBN: 978-0444700360

    Google Scholar 

  6. Barbagli F et al (2006) Haptic Discrimination of force direction and the influence of visual information. ACM Trans Appl Percep (TAP) 3(2):135. doi:10.1145/1141897.1141901

  7. Bensmaïa S, Hollins M, Yau J (2005) Vibrotactile intensity and frequency information in the pacinian system: a psychophysical model. Attention Percep Psychophys 67(5):828–841. doi:10.3758/BF03193536

    Article  Google Scholar 

  8. Bergmann Tiest WM (2010) Tactual perception of material properties. Vision Res 50(24):2775–2782. doi:10.1016/j.visres.2010.10.005

  9. Bergmann Tiest WM, Kappers A (2009) Cues for haptic perception of compliance. IEEE Trans Haptics 2(4):189–199. doi:10.1109/TOH.2009.16

  10. Bergmann Tiest WM, Vrijling AC, Kappers AM (2010) Haptic perception of viscosity. In: Haptics: generating and perceiving tangible sensations. Springer, Berlin, pp 29–34. doi:10.1007/978-3-642-14064-8_5

  11. Biggs J, Srinivasan MA (2002) Tangential versus normal displacements of skin: relative effectiveness for producing tactile sensations. In: 10th symposium on haptic interfaces for virtual environments and teleoperator systems. doi:10.1109/HAPTIC.2002.998949

  12. Biggs S, Srinivasan M (2002) Haptic interfaces. In: Stanney K, Hale KS (eds) Handbook of virtual environments. Lawrence Erlbaum, London, pp 93–116. ISBN: 978-0805832709

    Google Scholar 

  13. Birch AS and Srinivasan MA (1999) Experimental determination of the viscoelastic properties of the human fingerpad. Technical Report, Touch Lab, Massachusetts Institute of Technology, Cambridge, MA, USA. http://dspace.mit.edu/bitstream/handle/1721.1/4127/RLE-TR-632-41961944.pdf

  14. Blume HJ, Boelcke R (1990) Mechanokutane Sprachvermittlung. Reihe 10 137, vol 137. VDI-Verl, Düsseldorf. ISBN: 3-18-143710-7

    Google Scholar 

  15. Bolanowski SJ (1996) Information processing channels in the sense of touch. In: Franzén O, Johansson R, Terenius L (eds) Somesthesis and the neurobiology of the somatosensory cortex. Birkhäuser, Basel, pp 49–58. ISBN: 978–0817653224. doi:10.1007/978-3-0348-9016-8_5

  16. Bolanowski SJ, Verrillo RT (1982) Temperature and criterion effects in a somatosensory subsystem: a neurophysiological and psychophysical study. J Neurophysiol 48(3): 836–855. http://www.ncbi.nlm.nih.gov/pubmed/7131055

  17. Bolanowski SJ et al (1988) Four channels mediate the mechanical aspects of touch. J Acoust Soc Am 84(5):1680–1694. doi:10.1121/1.397184

    Article  Google Scholar 

  18. Bolanowski S, Gescheider G, Verrillo R (1994) Hairy skin: psychophysical channels and their physiological substrates. Somatosens Motor Res 11(3):279–290. doi:10.3109/08990229409051395

    Article  Google Scholar 

  19. Borg I, Groenen PJF (2005) Modern multidimensional scaling—theory and applications. Springer, Heidelberg

    MATH  Google Scholar 

  20. Brisben AJ, Hsiao SS, Johnson KO (1999) Detection of vibration transmitted through an object grasped in the hand. J Neurophysiol 81:1548–1558. http://jn.physiology.org/content/81/4/1548

  21. Brooks TL (1990) Telerobotic response requirements. In: IEEE international conference on systems, man and cybernetics. Los Angeles, CA, USA. doi:10.1109/ICSMC.1990.142071

  22. Brown L, Brewster S, Purchase H (2006) Multidimensional tactons for non-visual information presentation in mobile devices. In: Conference on human–computer interaction with mobile devices and services, pp 231–238. doi:10.1145/1152215.1152265

  23. Burdea GC (1996) Force and touch feedback for virtual reality. Wiley-Interscience, New York

    Google Scholar 

  24. Buus S (2002 )Psychophysical methods and other factors that affect the outcome of psychoacoustic measurements. In: Genetics and the function of the auditory system: proceedings of the 19th danavox symposium, Copenhagen, DK, pp 183–225

    Google Scholar 

  25. Cadoret G, Smith AM (1996) Friction, not texture, dictates grip forces used during object manipulation. J Neurophysiol 75(5):1963–1969. http://jn.physiology.org/content/75/5/1963

  26. Caldwell D, Tsagarakis N, Giesler C (1999) An integrated tactile/shear feedback array for stimulation of finger mechanoreceptor. In: IEEE international conference on robotics and automation, vol 1, pp 287–292. doi:10.1109/ROBOT.1999.769991

  27. Caldwell DG, Lawther S, Wardle A (1996) Multi-modal cutaneous tactile feedback. In: Proceedings of the IEEE international conference on intelligent robots and systems, pp 465–472. doi:10.1109/IROS.1996.570820

  28. Campion G, Hayward V (2008) On the synthesis of haptic textures. IEEE Trans Robot 24(3):527–536. ISSN 1552–3098. doi:10.1109/TRO.2008.924255

  29. Carter T et al (2013) UltraHaptics: multi-point mid-air haptic feedback for touch surfaces. In: Proceedings of the 26th annual ACM symposium on user interface software and technology. ACM 2013, pp 505–514. doi:10.1145/2501988.2502018

  30. Cellier FE (1991) Continuous system modeling. Springer, Berlin, pp 23–60, ISBN: 9780387975023

    Google Scholar 

  31. Cholewiak RW, Collins AA (1991) Sensory and physiological bases of touch. In: Heller MA, SchiffThe W (eds) Psychology of touch. Lawrence Erlbaum, London, pp 23–60. ISBN: 0805807500

    Google Scholar 

  32. Cholewiak SA, Tan HZ, Ebert DS (2008) Haptic identification of stiffness and force magnitude. In: Symposium on haptic interfaces for virtual environments and teleoperator systems. Reno, NE, USA. doi: 10.1109/HAPTICS.2008.4479918

  33. Cholewiak SA et al (2010) A frequency-domain analysis of haptic gratings. IEEE Trans Haptics 3:3–14. doi:10.1109/TOH.2009.36

    Article  Google Scholar 

  34. Clark F, Horch K (1986) Kinesthesia. In: Boff KR, Kaufman L, Thomas JP (eds) Handbook of perception and human performance. Wiley-Interscience, New York, pp 13.1–13.61. ISBN: 978-0471829577

    Google Scholar 

  35. Conner M et al (1988) Individualized optimization of the salt content of white bread for acceptability. J Food Sci 53(2):549–554. doi:10.1111/j.1365-2621.1988.tb07753.x

    Article  Google Scholar 

  36. Craig JC (1972) Difference threshold for intensity of tactile stimuli. Percep Psychophys 11(2):150–152. doi:10.3758/BF03210362

    Article  Google Scholar 

  37. Dandekar K, Raju B, Srinivasan M (2003) 3-D finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense. J Biomech Eng 125:682. doi:10.1115/1.1613673

  38. Dargahi J, Najarian S (2004) Human tactile perception as a standard for artificial tactile sensing—a review. Int J Med Robot Comput Assis Surg 1(1):23–35. doi:10.1002/rcs.3

  39. Darian-Smith I, Johnson K (1977) Thermal sensibility and thermoreceptors. J Invest Dermatol 69(1):146–153. doi:10.1111/1523-1747.ep12497936

    Article  Google Scholar 

  40. Dorjgotov E et al (2008) Force amplitude perception in six orthogonal directions. In: Symposium on haptic interfaces for virtual environments and teleoperator systems, Reno, NE, USA. doi:10.1109/HAPTICS.2008.4479927

  41. Draguhn A (2009) Membranpotenzial und Signalübertragung in Zellverbänden. In: Klinke R et al (eds) Physiologie, Thieme, pp 60–97. ISBN: 9783137960065

    Google Scholar 

  42. Dudel J (2006) Synaptische übertragung. In: Schmidt F, Schaible HG (eds) Neuro- und Sinnesphysiologie. Springer, Heidelberg. doi:10.1007/3-540-29491-0

  43. Eb Vander Poorten E, Demeester E, Lammertse P (2012) Haptic feedback for medical applications, a Survey. In: Actuator conference, Bremen. https://www.radhar.eu/publications/e.-vander-poorten-actuator12-haptic-feedback-formedical-applications-a-survey

  44. Edin BB, Abbs JH (1991) Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of the human hand. J Neurophysiol 65(3):657. http://www.humanneuro.physiol.umu.se/PDF-SCIENCE/1991_edin_abbs_DIST.pdf

  45. Ehrenstein WH, Ehrenstein A (1999) Psychophysical methods. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Heidelberg, pp 1211–1241. doi: 10.1007/3-540-29491-0

  46. Ellis S (1994) What are virtual environments? IEEE Comput Graph Appl 14(1): 17–22. ISSN 0272–1716. doi:10.1109/38.250914

  47. Enriquez M, MacLean K, Chita C (2006) Haptic phonemes: basic building blocks of haptic communication. In: Proceedings of the 8th international conference on multimodal interfaces (ICMI), Banff, Alberta, Canada, ACM 2006, pp 302–309. doi:10.1145/1180995.1181053

  48. Ernst M, Bülthoff H (2004) Merging the senses into a robust percept. Trends Cogn Sci 8(4):162–169. doi:10.1016/j.tics.2004.02.002

    Article  Google Scholar 

  49. Fechner GT (1860) Elemente der Psychophysik. Breitkopf und Härtel, Leipzig

    Google Scholar 

  50. Fiene J, Kuchenbecker KJ, Niemeyer G (2006) Event-based haptic tapping with grip force compensation. In: IEEE symposium on haptic interfaces for virtual environment and teleoperator systems. doi:10.1109/HAPTIC.2006.1627063

  51. Foster DH, Zychaluk K (2009) Model-free estimation of the psychometric function. Attention Percep Psychophys 71(6):1414–1425. doi:10.3758/APP.71.6.1414

    Article  Google Scholar 

  52. Frisina R, Gescheider G (1977) Comparison of child and adult vibrotactile thresholds as a function of frequency and duration. Percep Psychophys 22(1):100–103. doi:10.3758/BF03206086

    Article  Google Scholar 

  53. Garcia E.a-Pérez M (1998) Forced-choice staircases with fixed step sizes: asymptotic and small-sample properties. Vision Res 38(12):1861–1881. doi:10.1016/S0042-6989(97)00340-4

  54. Garneau CJ, Parkinson MB (2013) Considering just noticeable difference in assessments of physical accommodation for product design. In: Ergonomics ahead-of-print, pp 1–12. http://www.ncbi.nlm.nih.gov/pubmed/24099095

  55. Gentaz E, Hatwell Y (2008) Haptic perceptual illusions. In: Grunwald M (ed) Human haptic perception. Birkhäuser, Basel. ISBN 978-3-7643-7611-6. doi:10.1007/978-3-7643-7612-3_17

  56. Gescheider GA (1997) Psychophysics—the fundamentals. Lawrence Erlbaum, Mahwah

    Google Scholar 

  57. Gescheider GA, Bolanowski SJ, Hardick KR (2001) The frequency selectivity of information—processing channels in the tactile sensory system. Somatosens Motor Res 18(3):191–201. doi:10.1080/01421590120072187

    Article  Google Scholar 

  58. Gescheider GA, Migel N (1995) Some temporal parameters in vibrotactile forward masking. J Acoust Soc Am 98(6):3195–3199. doi:10.1121/1.413809

    Article  Google Scholar 

  59. Gescheider GA, O’Malley MJ, Verrillo RT (1983) Vibrotactile forward masking: evidence for channel independence. J Acoust Soc Am 74(2):474–485. doi:10.1121/1.389813

    Article  Google Scholar 

  60. Gescheider GA, Wright JH, Verillo RT (2009) Information-processing channels in the tactile sensory system. Psychology Press, New York

    Google Scholar 

  61. Gescheider GA et al (1985) Vibrotactile forward masking: psychophysical evidence for a triplex theory of cutaneous mechanoreception. J Acoust Soc Am 78(2):534–543. doi:10.1121/1.392475

  62. Gescheider GA et al (1990) Vibrotactile intensity discrimination measured by three methods. J Acoust Soc Am 87(1):330–338. doi:10.1121/1.399300

    Article  Google Scholar 

  63. Gescheider GA et al (1992) Vibrotactile forward masking as a function of age. J Acoust Soc Am 91(3):1690–1696. doi:10.1121/1.402448

    Article  Google Scholar 

  64. Gescheider GA et al (1994) The effects of aging on information-processing channels in the sense of touch: I. Absolute sensitivity. Somatosens Motor Res 11(4):345–357. doi:10.3109/08990229409028878

    Article  Google Scholar 

  65. Gescheider GA et al (1995) Vibrotactile forward masking: effects of the amplitude and duration of the masking simulus. J Acoust Soc Am 98(6):3188–3194. doi:10.1121/1.413808

    Article  Google Scholar 

  66. Gescheider GA et al (1999) Vibrotactile temporal summation: probability summation or neural integration? Somatos Motor Res 16:229–242. doi:10.1080/08990229970483

    Article  Google Scholar 

  67. Gescheider GA et al (2002) A four-channel analysis of the tactile sensitivity of the fingertip: frequency selectivity, spatial summation and temporal summation. Somatosens Motor Res 19:114–124. doi:10.1080/08990220220131505

    Article  Google Scholar 

  68. Gescheider GA et al (2005) Spatial summation in the tactile sensory system: probability summation and neural integration. Somatosens Motor Res 22:255–268. doi:10.1080/08990220500420236

    Article  Google Scholar 

  69. Gescheider G et al (1984) Effects of the menstrual cycle on vibrotactile sensitivity. Percep Psychophys 36(6):586–592. doi:10.3758/BF03207520

    Article  Google Scholar 

  70. Giachritsis C, Wright R, Wing A (2010) The contribution of proprioceptive and cutaneous cues in weight perception: early evidence for maximum-likelihood integration. In: Kappers AML, Bergmann-Tiest WM, van der Helm FC (eds) Haptics: generating and perceiving tangible sensations. LNCS, vol 6191. Proceedings of the eurohaptics conference, Amsterdam, NL. Springer, Heidelberg, pp 11–16. doi:10.1007/978-3-642-14064-8_2

  71. Gleeson BT, Horschel SK, Provancher WR (2010) Perception of direction for applied tangential skin displacement: effects of speed, displacement and repetition. IEEE Trans Haptics 3(3):177–188. ISSN 1939-1412. doi:10.1109/TOH.2010.20

  72. Goble A, Collins A, Cholewiak R (1996) Vibrotactile threshold in young and old observers: the effects of spatial summation and the presence of a rigid surround. J Acoust Soc Am 99(4):2256–2269. doi:10.1121/1.415413

    Article  Google Scholar 

  73. Goff G et al (1965) Vibration perception in normal man and medical patients. J Neurol Neurosurg Psychiatry 28:503–509. doi:10.1136/jnnp.28.6.503

    Article  Google Scholar 

  74. Goodwin A, John K, Marceglia A (1991) Tactile discrimination of curvature by humans using only cutaneous information from the fingerpads. Exp Brain Res 86(3):663–672. doi:10.1007/BF00230540

    Article  Google Scholar 

  75. Gordon IE, Morison V (1982) The haptic perception of curvature. Percep Psychophys 31(5):446–450. doi:10.3758/BF03204854

    Article  Google Scholar 

  76. Green B (1977) The effect of skin temperature on vibrotactile sensitivity. Percep Psychophys 21(3):243–248. doi:10.3758/BF03214234

    Article  Google Scholar 

  77. Greenspan J (1984) A comparison of force and depth of skin indentation upon psychophysical functions of tactile intensity. Somatosens Motor Res 2(1):33–48. http://www.ncbi.nlm.nih.gov/pubmed/6505462

  78. Greenspan JD, Bolanowski SJ (1996) The psychophysics of tactile perception and its peripheral physiological basis. In: Kruger L, Friedman MP, Carterette EC (1996) Pain and touch. Academic Press, Maryland Heights. ISBN 978-0124269101

    Google Scholar 

  79. Grunwald M et al (2001) Haptic perception in anorexia nervosa before and after weight gain. Jo Clin Exp Neuropsychol 23(4):520–529. doi:10.1076/jcen.23.4.520.1229

    Article  Google Scholar 

  80. Hale KS, Stanney KM (2004) Deriving haptic design guidelines from human physiological, psychophysical, and neurological foundations. IEEE Comput Graph Appl 24(2):33–39. doi:10.1109/MCG.2004.1274059

    Article  Google Scholar 

  81. Handwerker HO (2006) Somatosensorik. In: Schmidt F, Schaible HG (eds) Neuro- und Sinnesphysiologie. Springer, Heidelberg. doi:10.1007/3-540-29491-0

  82. Haptex. Grant No. IST-6549, last visited 07.03.2012. European Union. 2007. http://haptex.miralab.unige.ch/

  83. Hardy JD, Goodell H, Wolff HG (1951) The influence of skin temperature upon the pain threshold as evoked by thermal radiation. Science. doi:10.1126/science.115.2992.499

  84. Harvey LO (1986) Efficient estimation of sensory thresholds. Behav Res Methods 18(6):623–632. doi:10.1163/156856897X00159

    Article  Google Scholar 

  85. Hasser CJ (1995) Force-reflecting anthropomorphic hand masters. Technical Report, AL/CF-TR-1995 0110, Armstrong Laboratory. US Air Force. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA316017

  86. Hatzfeld C, Kern TA, Werthschützky R (2010) Design and evaluation of a measuring system for human force perception parameters. Sens Actuators Phys 162(2):202–209. doi:10.1016/j.sna.2010.01.026

  87. Hatzfeld C (2013) Experimentelle Analyse der menschlichen Kraftwahrnehmung als ingenieurtechnische Entwurfsgrundlage für haptische Systeme. Dissertation, Technische Universität Darmstadt. http://tuprints.ulb.tu-darmstadt.de/3392/. Dr. Hut Verlag, München. ISBN 978-3-8439-1033-0

  88. Hatzfeld C, Werthschützky R (2012) Just noticeable differences of low-intensity vibrotactile forces at the fingertip. In: Isokoski P, Springare J (eds) Haptics: perception, devices, mobility, and communication. LNCS 7282. Proceedings of the eurohaptics conference, Tampere, FIN. Springer, Heidelberg. doi:10.1007/978-3-642-31404-9_8

  89. C. Hatzfeld and R. Werthschützky. Mechanical Impedance as Coupling Parameter of Force and Deflection Perception: Experimental Evaluation. In: Isokoski P, Springare J (eds) Haptics: perception, devices, mobility, and communication. LNCS 7282. Proceedings of the eurohaptics conference, Tampere, FIN. Springer, Heidelberg. doi:10.1007/978-3-642-31401-8_18

  90. Hatzfeld C, Werthschützky R (2013) Simulation und Auswahl psychometrischer Verfahren zur Ermittlung von Kennwerten menschlicher Wahrnehmung. In: Knapp W, Gebhardt M (eds) Messtechnisches Symposium des Arbeitskreises der Hochschullehrer für Messtechnik, vol XXVII. Shaker, Aachen, Sept 2013, pp 51–62

    Google Scholar 

  91. Hayward V (2008) A brief taxonomy of tactileillusions and demonstrations that can be done in a hardware store. Brain Res Bull 75(6):742–752. doi:10.1016/j.brainresbull.2008.01.008

    Article  MathSciNet  Google Scholar 

  92. Hayward V, Astley OR (1996) Performance measures for haptic interfaces. Robot Res 1:195–207. doi:10.1007/978-1-4471-0765-1_22

    Google Scholar 

  93. Hayward V, MacLean KE (2007) Do it yourself haptics: part I. IEEE Robot Autom Mag 14(4):88–104. doi:10.1109/M-RA.2007.907921

    Article  Google Scholar 

  94. Hayward V, MacLean KE (2007) Do it yourself haptics: part II. IEEE Robot Autom Mag 15:104–119. doi:10.1109/M-RA.2007.914919

  95. Helbig HB, Ernst MO (2008) Haptic perception in interaction with other senses. In: Grunwald (ed) Human haptic perception—basics and applications. Birkhäuser, pp 235–249. ISBN 978-3764376116

    Google Scholar 

  96. Henkin R (1974) Sensory changes during the menstrual cycle. In: Ferin M et al (eds) Biorhythms and human reproduction. Wiley, New York, pp 277–285. ISBN 978-0471257615. http://www.ncbi.nlm.nih.gov/pubmed/11465979

  97. Hinterseer P (2009) Compression and transmission of haptic data in telepresence and teleaction systems. Dissertation, Technische Universität München. http://mediatum.ub.tum.de/doc/676484/676484.pdf

  98. Hinterseer P et al (2008) Perception-based data reduction and transmission of haptic data in telepresence and teleaction systems. IEEE Trans Sig Process 56(2):588–597. doi:10.1109/TSP.2007.906746

    Article  MathSciNet  Google Scholar 

  99. Hollins M (2002) Touch and haptics. In: Pashler H (ed) Steven’s handbook of experimental psychology. Wiley, New York, pp 585–618. ISBN 978–0471377771. doi:10.1002/0471214426.pas0114

  100. Hollins M, Risner SR (2000) Evidence for the duplex theory of tactile texture perception. Percep Psychophys 62(4):695–705. doi:10.3758/BF03206916

    Article  Google Scholar 

  101. Hollins M et al (1993) Perceptual dimensions of tactile surface texture: a multidimensional scaling analysis. Attention Percep Psychophys 54(6):697–705. doi:10.3758/BF03211795

    Article  Google Scholar 

  102. Höver R et al (2009) Computationally efficient techniques for data-driven haptic rendering. In: Third joint euroHaptics conference and symposium on haptic interfaces for virtual environment and eeleoperator systems (WorldHaptics conference), Salt Lake City, UT, USA, pp 39–44. doi:10.1109/WHC.2009.4810814

  103. Howe RD (1994) Tactile sensing and control of robotic manipulation. Adv Robot 8:245–261. doi:10.1163/156855394X00356

    Article  Google Scholar 

  104. Howe RD (1992) A force-reflecting teleoperated hand system for the study of tactile sensing in precision manipulation. In: IEEE international conference on robotics and automation. IEEE, pp 1321–1326. doi:10.1109/ROBOT.1992.220166

  105. Hugony A (1935) über die Empfindung von Schwingungen mittels des Taststinns. Zeitschrift für Biologie 96:548–553

    Google Scholar 

  106. Hwang J, Williams M, Niemeyer G (2004) Toward event-based haptics: rendering contact using open-loop force pulse. In: 12th international symposium on haptic interfaces for virtual environment and teleoperator systems, Chicago, IL, USA. doi:10.1109/HAPTIC.2004.1287174

  107. Illert M, Kuhtz-Buschbeck JP (2006) Motorisches system. In: Schmidt F, Schaible FG (eds) Neuro- und Sinnesphysiologie. Springer, Berlin. ISBN 978-3-540-25700-4. doi:10.1007/3-540-29491-0

  108. ISO 20462 (2012) Photography—psychophysical experimental methods for estimating image quality—Part 3: quality ruler method, ISO

    Google Scholar 

  109. ISO/IEC Guide 98–3 (2008) Uncertainty of measurement ? Part 3: guide to the expression of uncertainty in measurement. Genf, CH: ISO

    Google Scholar 

  110. Israr A, Choi S, Tan HZ (2006) Detection threshold and mechanical impedance of the hand in a pen-hold posture. In: Peking C (eds) International conference on intelligent robots and systems (IROS), pp 472–477. doi:10.1109/IROS.2006.282353

  111. Israr A, Choi S, Tan HZ (2007) Mechanical impedance of the hand holding a spherical tool at threshold and suprathreshold stimulation levels. In: Second joint euroHaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems (WorldHaptics conference), Tsukuba. doi:10.1109/WHC.2007.81

  112. Israr A, Tan HZ (2006) Frequency and amplitude discrimination along the kinesthetic-cutaneous continuum in the presence of masking stimuli. J Acoust Soc Am 120(5):2789–2800. doi:10.1121/1.2354022

  113. Jandura L, Srinivasan M (1994) Experiments on human performance in torque discrimination and control. In: Dynamic systems and control, ASME, DSC-55 1, pp 369–375. http://www.rle.mit.edu/touchlab/publications/1994_002.pdf

  114. Johansson RS, Birznieks I (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci 7(2):170–177. doi:10.1038/nn1177

    Article  Google Scholar 

  115. Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11(4):455–461. doi:10.1016/S0959-4388(00)00234-8

    Article  Google Scholar 

  116. Johnson K (2002) Neural basis of haptic perception. In: Pashler H (ed) Steven’s handbook of experimental psychology. Wiley, New York, pp 537–583. doi:10.1002/0471214426.pas0113

  117. Johnson K, Yoshioka T, Vega-Bermudez F (2000) Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol 17(6):539. doi:10.1097/00004691-200011000-00002

  118. Johnson K et al (1979) Coding of incremental changes in skin temperature by a population of warm fibers in the monkey: correlation with intensity discrimination in man. J Neurophysiol 42(5):1332–1353. http://www.ncbi.nlm.nih.gov/pubmed/114610

  119. Jones L (2000) Kinesthetic sensing. MIT Press, Cambridge. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.133.5356

  120. Jones L, Hunter I (1990) A perceptual analysis of stiffness. Exp Brain Res 79(1):150–156. doi:10.1007/BF00228884

    Article  Google Scholar 

  121. Jones L, Hunter I (1993) A perceptual analysis of viscosity. Exp Brain Res 94(2):343–351. doi:10.1007/BF00230304

    Article  Google Scholar 

  122. Jones L, Lederman S (2006) Human hand function. Oxford University Press, Oxford

    Book  Google Scholar 

  123. Jones L, Piateski E (2006) Contribution of tactile feedback from the hand to the perception of force. Exp Brain Res 168:289–302. doi:10.1007/s00221-005-0259-8

    Article  Google Scholar 

  124. Jones LA (1989) Matching forces: constant errors and differential thresholds. Perception 18(5):681–687. doi:10.1068/p180681

    Article  Google Scholar 

  125. Jones LA, Ho H-N (2008) Warm or cool, large or small? The challenge of thermal displays. IEEE Trans Haptics 1(1):53–70. doi:10.1109/TOH.2008.2

    Article  Google Scholar 

  126. Jung J, Ryu J, Choi S (2007) Physical and perceptual characteristics of vibration rendering in mobile device. ACM Trans Appl Perception

    Google Scholar 

  127. Kaczmarek KA, Bach-Y-Rita P (1995) Tactile displays. In: Barfield W, Furness T (eds) Virtual environments and advanced interface design. Oxford University Press, New-York, pp 349–414. ISBN 978-0195075557

    Google Scholar 

  128. Kaczmarek K et al (1991) Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng 38(1):1–16. doi:10.1109/10.68204

  129. Kaernbach C (2001) Adaptive threshold estimation with unforced-choice tasks. Percep Psychophys 63(8):1377–1388. doi:10.3758/BF03194549

    Article  Google Scholar 

  130. Kappers AML, Koenderink JJ (1999) Haptic perception of spatial relations. Perception 28(6):781–795. doi:10.1068/p2930

    Article  Google Scholar 

  131. Karam M, Schraefel MC (2005) A taxonomy of gestures in human computer interactions. Techincal Report, University of Southampton. http://eprints.soton.ac.uk/id/eprint/261149

  132. Keppel G (1991) Design and analysis: a researcher’s handbook. Pearson Education, Old Tappan

    Google Scholar 

  133. Kern T (2006) Haptisches Assistenzsystem für diagnostische und therapeutische Katheterisierungen. PhD thesis, Techische Universität Darmstadt, Institut für Elektromechanische Konstruktionen. http://tuprints.ulb.tu-darmstadt.de/761/

  134. Kildal J (2012) Kooboh: variable tangible properties in a handheld haptic-illusion box. In: Isokoski P, Springare J (eds) Haptics: perception, devices, mobility, and communication. Proceedings of the eurohaptics conference, Tampere. Springer, Heidelberg, pp 191–194. doi:10.1007/978-3-642-31404-9_33

  135. Kimura T, Nojima T (2012) Pseudo-haptic feedback on softness induced by grasping motion. In: Haptics: perception, devices, mobility, and communication. Springer, Berlin, pp 202–205. doi:10.1007/978-3-642-31404-9_36

  136. King HH, Donlin R, Hannaford B (2010) Perceptual thresholds for single vs. multi-finger haptic interaction. In: IEEE haptics symposium, Waltham, MA, USA, pp 95–99. doi:10.1109/HAPTIC.2010.5444670

  137. King-Smith PE et al (1994) Efficient and unbiased modifications of the QUEST threshold method: theory, simulations, experimental evaluation and practical implementation. Vision Res 34(7):885–912. doi:10.1016/0042-6989(94)90039-6

    Article  Google Scholar 

  138. Klatzky RL, Pawluk D, Peer A (2013) Haptic perception of material properties and implications for applications. Proc IEEE 101:2081–2092. doi:10.1109/JPROC.2013.2248691

    Google Scholar 

  139. Klein S (2001) Measuring, estimating, and understanding the psychometric function: a commentary. Attention Percep Psychophys 63(8):1421–1455. doi:10.3758/BF03194552

    Article  Google Scholar 

  140. Klinke R (2010) Das zentrale Nervensystem—Grundlage bewussten Menschseins. In: Klinke R et al (eds) Physiologie. Thieme, pp 623–642. ISBN 978-3137960065

    Google Scholar 

  141. Knowles WB, Sheridan TB (1966) The feel of rotary controls: friction and inertial. human factors. J Human Fact Ergon Soc 8(3):209–215. doi:10.1177/001872086600800303

  142. Kontarinis DA, Howe RD (1993) Tactile display of contact shape in dextrous telemanipulation. In: ASME winter annual meeting: advances in robotics, mechatronics and haptic interfaces, New Orleans, DSC-vol 49, pp 81–88

    Google Scholar 

  143. Kontsevich L, Tyler C (1999) Bayesian adaptive estimation of psychometric slope and threshold. Vision Res 39(16):2729–2737. doi:10.1016/S0042-6989(98)00285-5

    Article  Google Scholar 

  144. Kruger L, Friedman MP, Carterette EC (eds) (1996) Pain and touch. Academic Press, Maryland Heights. ISBN 978-0123992390

    Google Scholar 

  145. Kuchenbecker KJ, Fiene J, Niemeyer G (2006) Improving contact realism through event-based haptic feedback. IEEE Trans Visual Comput Graph 12(2):219–230. doi:10.1109/TVCG.2006.32

    Article  Google Scholar 

  146. Kuchenbecker K et al (2010) VerroTouch: high-frequency acceleration feedback for telerobotic surgery. In: Kappers AML, Bergmann-Tiest WM, van der Helm FC (eds) Haptics: generating and perceiving tangible sensations. Proceedings of the eurohaptics conference, Amsterdam, NL. Springer, Heidelberg, pp 189–196. doi:10.1007/978-3-642-14064-8_28

  147. Kuroki S, Watanabe J, Nishida S (2012) Dissociation of vibrotactile frequency discrimination performances for supra-threshold and near-threshold vibrations. In: Isokoski P, Springare J (eds) Haptics: perception, devices, mobility, and communication. Proceedings of the eurohaptics conference, Tampere. Springer, Heidelberg, pp 79–84. doi:10.1007/978-3-642-31404-9_14

  148. Kwon DS et al (2001) Realistic force reflection in a spine biopsy simulator. In: IEEE international conference on robotics and automation, vol 2, pp 1358–1363. doi:10.1109/ROBOT.2001.932799

  149. Kyung KH et al (2005) Perceptual and biomechanical frequency response of human dkin: implication for design of tactile displays. In: First joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems (WorldHaptics conference). doi:10.1109/WHC.2005.105

  150. LaMotte RH, Srinivasan M (1991) Surface microgeometry: tactile perception and neural encoding. In: Franzen O, Westman J (eds) Information processing in the somatosensory system. MacMillan Press, London, pp 49–58. ISBN 978-0333524930

    Google Scholar 

  151. Lawrence DA et al (2000) Rate-hardness: a new performance metric for haptic interfaces. IEEE Trans Robot Autom 16:357–371. doi:10.1109/70.864228

    Article  Google Scholar 

  152. Lécuyer A (2009) Simulating haptic feedback using vision: a survey of research and applications of pseudo-haptic feedback. Pres Teleoper Virt Environ 18(1):39–53. doi:10.1162/pres.18.1.39

  153. Lederman SJ (1991) Skin and touch. In: Dulbecco R (ed) Encyclopedia of human biology. Academic Press, Maryland Heights, pp 51–63. ISBN 978-0122267475

    Google Scholar 

  154. Lederman SJ, Klatzky RL (2009) Haptic perception: a tutorial. Attention Percep Psychophys 71(7):1439. doi:10.3758/APP.71.7.1439

  155. Lederman S, Jones L (2011) Tactile and Haptic Illusions. IEEE Transactions on Haptics 4(4):273–294. doi:10.1109/TOH.2011.2

    Article  Google Scholar 

  156. Lederman SJ (1981) The perception of surface roughness by active and passive touch. Bull Psychonomic Soc 18(5):253–255. doi:10.3758/BF03333619

    Article  Google Scholar 

  157. Lederman SJ, Klatzky RL (1987) Hand movements: a window into haptic object recognition. Cogn psychol 19(3):342–368. doi:10.1016/0010-0285(87)90008-9

    Article  Google Scholar 

  158. Leek MR (2001) Adaptive procedures in psychophysical research. Percep Psychophys 63(8):1279–1292. doi:10.3758/BF03194543

    Article  Google Scholar 

  159. Lenk A et al (2011) Electromechanical systems in microtechnology and mechatronics: electrical, mechanical and acoustic networks, their interactions and applications. Springer, Heidelberg. ISBN 978-3-642-10806-8

    Google Scholar 

  160. Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acous Soc Am 49(2):467–477. doi:10.1121/1.1912375

  161. Li Y et al (2008) Passive and active kinesthetic perception just noticeable difference for natural frequency of virtual dynamic systems. In: Symposium on haptic interfaces for virtual environments and teleoperator systems, Reno. doi:10.1109/HAPTICS.2008.4479908

  162. Libouton X et al (2012) Tactile roughness discrimination of the finger pad relies primarily on vibration sensitive afferents not necessarily located in the hand. Behav Brain Res 229(1):273–279. doi:10.1016/j.bbr.2012.01.018

    Article  Google Scholar 

  163. MacLean K and Enriquez M (2003) Perceptual design of haptic icons. In: Proceedings of EuroHaptics. http://citeseerx.ist.psu.edu/viewdoc/summary?10.1.1.138.6172.

  164. Macmillan N, Creelman C (2005) Detection theory: a user’s guide. Lawrence Erlbaum, London

    Google Scholar 

  165. Mahns D et al (2006) Vibrotactile frequency discrimination in human hairy skin. J Neurophysiol 95(3):1442. doi:10.1152/jn.00483.2005

  166. Makous JC, Gescheider GA, Bolanowski SJ (1996) Decay in the effect of vibrotactile masking. J Acoust Soc Am 99(2):1124–1129. doi:10.1121/1.414597

    Article  Google Scholar 

  167. McMahan W et al (2011) Tool contact acceleration feedback for telerobotic surgery. IEEE Trans Haptics 4(3):210–220. doi:10.1109/TOH.2011.31

    Article  Google Scholar 

  168. Morioka M, Griffin MJ (2005) Thresholds for the perception of hand-transmitted vibration: dependence on contact area and contact location. Somatosens Motor Res 22:281–297. doi:10.1080/08990220500420400

    Article  Google Scholar 

  169. Musmann H (2006) Genesis of the MP3 audio coding standard. IEEE Trans Consum Electron 52(3):1043–1049. doi:10.1109/TCE.2006.1706505

    Article  Google Scholar 

  170. Nitsch V, Färber B (2012) A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems. IEEE Trans Haptics 6:387–398. doi:10.1109/ToH.2012.62

    Article  Google Scholar 

  171. Okamura AM, Dennerlein JT, RD Howe (1998) Vibration feedback models for virtual environments. In: International conference on robotics & automation. doi:10.1109/ROBOT.1998.677050

  172. Okazaki R, Kajimoto H, Hayward V (2012) Vibrotactile stimulation can affect auditory loudness: a pilot study. In: Isokoski P, Springare J (eds) Haptics: perception, devices, mobility, and communication. LNCS 7282. Proceedings of the eurohaptics conference, Tampere. Springer, Heidelberg, pp 103–108. doi:10.1007/978-3-642-31404-9_18

  173. Otto S, Weinzierl S (2009) Comparative simulations of adaptive psychometric procedures. In: Jahrestagung der Deutschen Gesellschaft für Akustik Dt Ges für Akustik, Rotterdam, pp 1276–1279. ISBN 9783980865968

    Google Scholar 

  174. Paek TS, Bahl P, Foehr OH (2011) Interacting with a mobile device within a vehicle using gestures. 20130155237 A1

    Google Scholar 

  175. Pai D, Rizun P (2003) The WHaT: a wireless haptic texture sensor. In: 11th symposium on haptic interfaces for virtual environment and teleoperator systems, pp 3–9. doi:10.1109/HAPTIC.2003.1191210

  176. Pang X, Tan H, Durlach N (1991) Manual discrimination of force using active finger motion. Percep Psychophys 49(6):531–540. doi:10.3758/BF03212187

    Article  Google Scholar 

  177. Pang X, Tan H, Durlach N (1992) Manual resolution of length, force and compliance. In: ASME DSC Adv Robot 42:13–18. https://engineering.purdue.edu/hongtan/pubs/PDFfiles/C05_Tan_ASME1992.pdf

  178. Pare M, Carnahan H, Smith A (2002) Magnitude estimation of tangential force applied to the fingerpad. Exp Brain Res 142(3):342–348. doi:10.1007/s00221-001-0939-y

    Article  Google Scholar 

  179. Peters R, Hackeman E, Goldreich D (2009) Diminutive digits discern delicate details: fingertip size and the sex difference in tactile spatial acuity. J Neurosci 29(50):15756. doi:10.1523/?JNEUROSCI.3684-09.2009

  180. Pongrac H (2008) Vibrotactile perception: examining the coding of vibrations and the just noticeable difference under various conditions. Multimedia Syst 13(4):297–307. doi:10.1007/s00530-007-0105-x

    Article  Google Scholar 

  181. Pongrac H et al (2006) Limitations of human 3D force discrimination. In: Proceedings of human—centered robotics systems. http://citeseerx.ist.psu.edu/viewdoc/download?doi:10.1.1.68.8597%26rep=rep1%26type=pdf.

  182. Prins N, Kingdom FAA (2010) Psychophysics: a practical introduction. Academic Press, Maryland Heights

    Google Scholar 

  183. Provancher WR, Sylvester ND (2009) Fingerpad skin stretch increases the perception of virtual friction. IEEE Trans Haptics 2(4):212–223. doi:10.1109/TOH.2009.34

    Article  Google Scholar 

  184. Pusch A, Lécuyer A (2011) Pseudo-haptics: from the theoretical foundations to practical system design guidelines. In: Proceedings of the 13th international conference on multimodal interfaces, ACM 2011, pp 57–64. doi:10.1145/2070481.2070494

  185. Rank M et al (2012) Masking effects for damping JND. In: Isokoski P, Springare J (eds) Haptics: perception, devices, mobility, and communication. LNCS 7282. Proceedings of the eurohaptics conference, Tampere. Springer, Heidelberg, pp 145–150. doi:10.1007/978-3-642-31404-9_25

  186. Rausch J et al (2006) INKOMAN-analysis of mechanical behaviour of liver tissue during intracorporal interaction. In: Gemeinsame Jahrestagung der Deutschen, Österreichischen und Schweizerischen Gesellschaften für Biomedizinische Technik 6(9)

    Google Scholar 

  187. Rausch J (2005) Analyse der mechanischen Eigenschaften von Lebergewebe bei intrakorporaler Interaktion. Diploma Thesis, Darmstadt: Technische Universität Darmstadt, Institut für ElektromechanischeKonstruktionen. http://tubiblio.ulb.tu-darmstadt.de/53792/

  188. Redmond B et al (2010) Haptic characteristics of some activities of daily living. In: Haptics Symposium, IEEE, pp 71–76. doi:10.1109/HAPTIC.2010.5444674

  189. Rösler F, Battenberg G, Schüttler F (2009) Subjektive Empfindungen und objektive Charakteristika von Bedienelementen. Automobiltechnische Zeitschrift 4:292–297. doi:10.1007/BF03222068

    Google Scholar 

  190. Salisbury C et al (2011) What you can’t feel won’t hurt you: evaluating haptic hardware using a haptic contrast sensitivity function. IEEE Trans Haptics 4(2):134–146. doi:10.1109/TOH.2011.5

    Article  Google Scholar 

  191. Samur E (2010) Systematic evaluation methodology and performance metrics for haptic interfaces. Dissertation, école Polytechnique Fédérale de Lausanne. doi:10.5075/epfl-thesis-4648. http://infoscience.epfl.ch/record/145888

  192. Scheibert J et al (2004) A novel biomimetic haptic sensor to study the physics of touch. In: Colloque Mé, nanotransduction, Paris. http://www.lps.ens.fr/scheibert/MT2004.pdf

  193. Seow KC (1988) Physiology of touch, grip and gait. In: Webster JG (ed) Tactile sensors for robotics and medicine. Wiley, New York, pp 13–40. ISBN 978-0471606079

    Google Scholar 

  194. Shimoga K (1993) A survey of perceptual feedback issues in dexterous telemanipulation part I. Finger force feedback. In: Proceedings of the IEEE virtual reality annual international symposium, Seattle, WA, USA, pp 263–270. doi:10.1109/VRAIS.1993.380770

  195. Smith AM, Gosselin G, Houde B (2002) Deployment of fingertip forces in tactile exploration. Exp Brain Res 147(2):209–218. doi:10.1007/s00221-002-1240-4

    Article  Google Scholar 

  196. Smith CU (2000) The biology of sensory systems. Wiley, Chichester, p 445. ISBN 0-471-89090-1

    Google Scholar 

  197. Sodhi R et al (2013) AIREAL: interactive tactile experiences in free air. ACM Trans Graph (TOG) 32(4):134. doi:10.1145/2461912.2462007

  198. Steinbach E et al (2011) Haptic data compression and communication. Sig Process Mag 28(1):87–96. doi:10.1109/MSP.2010.938753

    Article  MathSciNet  Google Scholar 

  199. Stevens SS (1975) Psychophysics. Transaction Books, Piscataway. ISBN 978-0887386435

    Google Scholar 

  200. Symmons M et al (2005) Active versus passive touch in three dimensions. In: First joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems (WorldHaptics Conference), Pisa. doi:10.1109/WHC.2005.20

  201. Tan HZ et al (1993) Manual resolution of compliance when work and force cues are minimized. In: Advances in robotics, mechatronics and haptic interfaces, pp 99–104. http://citeseerx.ist.psu.edu/viewdoc/download?10.1.1.50.2758&rep=rep1&type=pdf

  202. Tan HZ et al (1994) Human factors for the design of force-reflecting haptic interfaces. In: ASME DSC Dyn Syst Control 55(1):353–359. http://touchlab.mit.edu/publications/1994_004.pdf

  203. Tan HZ et al (1999) Information transmission with a multifinger tactual display. Percep Psychophys 61(6):993–1008. doi:10.3758/BF03207608

    Article  Google Scholar 

  204. Tan HZ et al (2006) Force direction discrimination is not influenced by reference force direction. In: Haptics-e 1, pp 1–6. http://jks-folks.stanford.edu/papers/Haptic-Discrimination.pdf

  205. Tan H, Rabinowitz W (1996) A new multi-finger tactual display. J Acous Soc Am 99(4):2477–2500. doi:10.1121/1.415560

    Google Scholar 

  206. Tan H et al (2003) Temporal masking of multidimensional tactual stimuli. J Acous Soc Am 116(9):3295–3308. doi:10.1121/1.1623788

  207. Tanaka Y et al (2012) Contact force during active roughness perception. In: Isokoski P, Springare J (eds) Haptics: perception, devices, mobility, and communication, vol 7282. LNCS. Proceedings of the eurohaptics conference, Tampere. Springer, Heidelberg, pp 163–168. doi:10.1007/978-3-642-31404-9_28

  208. Taylor M, Creelman C (1967) PEST: efficient estimates on probability functions. J Acous Soc Am 41(4):782–787. doi:10.1121/1.1910407

    Article  Google Scholar 

  209. Tillmann BN (2010) Atlas der Anatomie des Menschen. Springer, Berlin. ISBN 978-3-642-02679-9

    Google Scholar 

  210. Toffin D et al (2003) Perception and reproduction of force direction in the horizontal plane. J Neurophys 90:3040–3053. doi:10.1152/jn.00271.2003

  211. Treede RD (2007) Das somatosensorische system. In: Schmidt RF, Lang F (eds) Physiologie des Menschen. Springer, Heidelberg, pp 296–323. doi:10.1007/978-3-540-32910-7_14

  212. Å. Vallbo A, Johansson R et al (1984) Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Human Neurobiol 3(1):3–14. http://www.ncbi.nlm.nih.gov/pubmed/6330008

  213. Verrillo RT, Gescheider GA (1992) Perception via the sense of touch. In: Summers IR (ed) Tactile aids for the hearing impaired. Whurr, London, pp 1–36. ISBN 978-1-870332- 17-0

    Google Scholar 

  214. Verrillo R (1979) Comparison of vibrotactile threshold and suprathreshold responses in men and women. Percep Psychophys 26(1):20–24. doi:10.3758/BF03199857

    Article  Google Scholar 

  215. Verrillo R (1980) Age related changes in the sensitivity to vibration. J Gerontol 35(2):185–193. doi:10.1093/geronj/35.2.185

    Article  Google Scholar 

  216. Verrillo R (1982) Effects of aging on the suprathreshold responses to vibration. Percep Psychophys 32(1):61–68. doi:10.3758/BF03204869

    Article  Google Scholar 

  217. Verrillo R, Bolanowski S (1986) The effects of skin temperature on the psychophysical responses to vibration on glabrous and hairy skin. J Acous Soc Am 80:528. doi:10.1121/1.394047

  218. Verrillo R et al (1998) Effects of hydration on tactile sensation. Somatos Motor Res 15(2):93–108. doi:10.1080/08990229870826

    Article  Google Scholar 

  219. Wagner M, Gerling G, Scanlon J (2008) Validation of a 3-D finite element human fingerpad model composed of anatomically accurate tissue layers. In: Symposium on haptic interfaces for virtual environment and teleoperator systems, IEEE 2008, pp 101–105. doi:10.1109/HAPTICS.2008.4479922

  220. Wang Z et al (2012) A 3-D nonhomogeneous FE model of human fingertip based on MRI measurements. IEEE Transactions on Instrument Measure 61(12):3147–3157. doi:10.1109/TIM.2012.2205102

    Article  Google Scholar 

  221. Weber EH (1905) Tastsinn und Gemeingefühl. Engelmann. ISBN 9783836402491 (Reprint)

    Google Scholar 

  222. Weinstein S (1968) Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In: First international symposium on the skin senses

    Google Scholar 

  223. Wichmann F, Hill N (2001) The psychometric function: I. Fitting, sampling, and goodness of fit. Percep Psychophys 63(8):1293. doi:10.3758/BF03194544

  224. Wickens TD (2002) Elementary signal detection theory. Oxford University Press, Oxford

    Google Scholar 

  225. Wiertlewski M (2013) Reproduction of tactual textures: transducers, mechanics, and signal encoding. Springer, Berlin. ISBN 978-1-4471-4840-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hatzfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Hatzfeld, C. (2014). Haptics as an Interaction Modality. In: Hatzfeld, C., Kern, T. (eds) Engineering Haptic Devices. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6518-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6518-7_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6517-0

  • Online ISBN: 978-1-4471-6518-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics