Skip to main content

Evaluation of Haptic Systems

  • Chapter
  • First Online:
Book cover Engineering Haptic Devices

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

In this chapter, a number of measurement methods and tests are presented that can be used either for verification or validation or—sometimes—both. We therefore refrain from an ordering based on these steps, but will present the methods based on the focus of the evaluation method. In that sense, one can identify three main foci of evaluation methods: system-centered methods that will test system properties (and are mostly used for verification, Sect. 13.1), task-centered methods that will test the task performance of a user working with the haptic system (such tests are mainly used for validation, but they can also verify system properties depending on the test design, Sect. 13.2), and user-centered methods that will measure the impact of the haptic system on the user. The latter are almost exclusively used for system validation and further described in Sect. 13.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Accot J, Zhai S (1997) Beyond Fitts’ law: models for trajectory-based HCI tasks. In: Proceedings of the ACM SIGCHI conference on human factors in computing systems. ACM, pp 295–302. doi:10.1145/258549.258760

  2. Acker A (2011) Anwendungspotential von Telepräsenz-und Teleaktionssystemen für die Präzisionsmontage. Dissertation, Technische Universität München, http://mediatum.ub.tum.de/doc/1007163/1007163.pdf

  3. Ahlberg G et al (2007) Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg 193(6):797–804. doi:10.1016/j.amjsurg.2006.06.050

    Article  Google Scholar 

  4. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA). Toolbox: Instrumente zur Erfassung psychischer Belastungen. last accessed 2014-Feb-4. 2014. http://www.baua.de/de/Informationen-fuer-die-Praxis/Handlungshilfen-und-Praxisbeispiele/Toolbox/Toolbox.html

  5. Chertoff D, Goldiez B, LaViola J (2010) Virtual experience test: a virtual environment evaluation questionnaire. In: 2010 IEEE virtual reality conference (VR), Mar 2010, pp 103–110. doi:10.1109/VR.2010.5444804

  6. Cholewiak SA, Tan HZ, Ebert DS (2008) Haptic identification of stiffness and force magnitude. In: Symposium on haptic interfaces for virtual environments and teleoperator systems. Reno, NE, USA. doi:10.1109/HAPTICS.2008.4479918

  7. Chun K et al (2004) Evaluating haptics and 3D stereo displays using Fitts’ law. In: IEEE proceedings of the 3rd IEEE international workshop on haptic, audio and visual environments and their applications, 2004, HAVE 2004, pp 53–58. doi:10.1109/HAVE.2004.1391881

  8. Colgate J, Brown J (1994) Factors affecting the Z-Width of a haptic display. In: IEEE proceedings international conference on robotics and automation, 1994, vol 4. May 1994, pp 3205–3210. doi:10.1109/ROBOT.1994.351077

  9. Derossis AM et al (1998) Development of a model for training and evaluation of laparoscopic skills. Am J Surg 175(6):482–487. doi:10.1016/S0002-9610(98)00080-4

    Article  Google Scholar 

  10. Domhardt et al M (2013) Evaluation eines haptischen Touchpads für die Fahrer-Fahrzeug-Interaktion. In: Brandenburg E et al (eds) Grundlagen und Anwendungen der Mensch-Maschine-Interaktion: 10. Berliner Werkstatt Mensch- Maschine-Systeme (Berlin 2013). Fortschritt-Berichte VDI, Reihe 22, Mensch-Maschine-Systeme. VDI-Verlag, Düsseldorf, pp 9–18. https://www.tu-berlin.de/zentrum_mensch-maschine-systeme/menue/veranstaltungen/berliner_werkstaetten_mms/10_berliner_werkstatt_mms/

  11. Durlach N et al (1989) Notes and comment resolution in one dimension with random variations in background dimensions. Attention Percept Psychophys 46(3):293–296. doi:10.3758/BF03208094

    Article  Google Scholar 

  12. Fitts P (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exper Psychol 47(6):381. doi:10.1037/h0055392

    Article  Google Scholar 

  13. Gleeson BT, Horschel SK, Provancher WR (2009) Communication of direction through lateral skin stretch at the fingertip. In: Third joint EuroHaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems (WorldHaptics Conference). Salt Lake City, UT, USA. doi:10.1109/WHC.2009.4810804

  14. Gleeson BT, Horschel SK, Provancher WR (2010) Perception of direction for applied tangential skin displacement: effects of speed, displacement and repetition. In: IEEE transactions on haptics 3.3 (2010), pp 177–188. ISSN, pp 1939–1412. doi:10.1109/TOH.2010.20

  15. Hannaford B et al (1991) Performance evaluation of a six-axis generalized force-reflecting teleoperator. IEEE Trans Syst Man Cybern 21(3):620–633. doi:10.1109/21.97455

    Article  Google Scholar 

  16. Hart S, Staveland L (1988) Development of NASA-TLX (task load index): results of empirical and theoretical research. Hum Mental Workload 1:139–183. doi:10.1016/S0166-4115(08)62386-9

    Article  Google Scholar 

  17. Hayward V, Astley OR (1996) Performance measures for haptic interfaces. Robot Res 1:195–207. doi:10.1007/978-1-4471-0765-1_22

    Google Scholar 

  18. Hirche S, Buss M (2007) Human perceived transparency with time delay. In: Advances in telerobotics (2007), pp 191–209. doi:10.1007/978-3-540-71364-7_13

  19. Horschel SK, Gleeson BT, Provancher WR (2009) A fingertip shear tactile display for communicating direction cues. In: Third joint EuroHaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems (WorldHaptics Conference), pp. 611–612. doi:10.1109/WHC.2009.4810906

  20. Jones L, Tan H (2013) Application of psychophysical techniques to haptic research. IEEE Trans Haptics 6:268–284. doi:10.1109/TOH.2012.74

    Article  Google Scholar 

  21. Kappers AM, Bergmann Tiest WM (2013) Haptic perception. Wiley Interdisc Rev: Cogn Sci 4(4):357–374. doi:10.1002/wcs.1238

    Article  Google Scholar 

  22. Kassner S (2013) Haptische Mensch-Maschine-Schnittstelle für ein laparoskopisches Chirurgie-System. Dissertation, Technische Universität Darmstadt. http://tubiblio.ulb.tudarmstadt.de/63334/

  23. Kron A, Schmidt G (2005) Haptisches Telepräsenzsystem zur Unterstützung bei Entschärfungstätigkeiten: Systemgestaltung, Regelung und Evaluation. In: at- Automatisierungstechnik/Methoden und Anwendungen der Steuerungs-, Regelungs-und Infor- mationstechnik 53.3/2005, pp 101–113. doi:10.1524/auto.53.3.101.60272

  24. Liedecke C, Baumann G, Reuss H-C (2014) Potential of the foot as a haptic interface for future communication and vehicle controlling. In: Proceedings of 10th ITS European congress. Helsinki, FIN

    Google Scholar 

  25. Lysaght RJ et al (1989) Operator workload: comprehensive review and evaluation of operator work-load methodologies. Technical report DTIC document. http://www.dtic.mil/dtic/tr/fulltext/u2/a212879.pdf

  26. MacKenzie IS, Buxton W (1991) Extending Fitts’ law to two-dimensional tasks. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 219–226. doi:10.1145/142750.142794

  27. McMahan W et al (2011) Tool contact acceleration feedback for telerobotic surgery. IEEE Trans Haptics 4(3):210–220. doi:10.1109/TOH.2011.31

    Article  Google Scholar 

  28. Nitsch V, Färber B (2012) A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems. IEEE Trans Haptics 6:387–398. doi:10.1109/ToH.2012.62

    Article  Google Scholar 

  29. Nitsch V et al (2010) On the impact of haptic data reduction and feedback modality on quality and task performance in a telepresence and teleaction system. In: Haptics: generating and perceiving tangible sensations (2010), pp 169–176. doi:10.1007/978-3-642-14064-8_25

  30. Pongrac H (2008) Gestaltung und evaluation von virtuellen und Telepräsenzsystemen an hand von Aufgabenleistung und Präsenzempfinden. PhD thesis, Universität der Bundeswehr, München. http://athene.bibl.unibw-muenchen.de:8081/node?id=86166

  31. Samur E (2010) Systematic evaluation methodology and performance metrcis for haptic interfaces. Dissertation, École Polytechnique Fédérale de Lausanne. doi:10.5075/epfl-thesis-4648, http://infoscience.epfl.ch/record/145888

  32. Samur E (2012) Performance metrics for haptic interfaces. Springer, Berlin. doi:10.1007/978-1-4471-4225-6, ISBN:978-1447142249

  33. Sarodnick F, Brau H (2006) Methoden der usability evaluation. Huber, Bern

    Google Scholar 

  34. Schlick C, Luczak H, Bruder R (2010) Arbeitswissenschaft. Springer, DE. ISBN:978-3-540-78333-6

    Google Scholar 

  35. Scilingo EP et al (2003) Haptic displays based on magnetorheological fluids: design, realization and psychophysical validation. In: IEEE proceedings of 11th symposium on haptic interfaces for virtual environment and teleoperator systems, 2003, HAPTICS 2003, pp 10–15. doi:10.1109/HAPTIC.2003.1191217

  36. Serafin C et al (2009) International product user research: concurrent studies comparing touch screen feedback in Europe and North America. In: SAE world congress and exhibition, SAE International. doi:10.4271/2009-01-0779

  37. Silva CWD (2007) Sensors and actuators: control system instrumentation. CRC Press, Boca Raton. ISBN:978- 1420044836

    Google Scholar 

  38. Tan H, Rabinowitz W (1996) A new multi-finger tactual display. J Acoust Soc Am 99(4):2477–2500. doi:10.1121/1.415560

    Google Scholar 

  39. Várhelyi A et al (2004) Effects of an active accelerator pedal on driver behaviour and traffic safety after long-term use in urban areas. Accid Anal Prev 36(5):729–737. http://dx.doi.org/10.1016/j.aap.2003.06.001

  40. Vollestad NK (1997) Measurement of human muscle fatigue. J Neurosci Methods 74(2):219–227. http://dx.doi.org/10.1016/S0165-0270(97)02251-6

  41. Wall S, Harwin W (2000) Quantification of the effects of haptic feedback during a motor skills task in a simulated environment. In: Proceedings of second PHANToM users research symposium, 2000. http://www.personal.reading.ac.uk/shshawin/pubs/wall_purs2000.pdf

  42. Weisenberger JM, Krier MJ, Rinker MA (2000) Judging the orientation of sinusoidal and squarewave virtual gratings presented via 2-DOF and 3-DOF haptic interfaces. Haptics-e 1(4):1–20. http://www.haptics-e.org/Vol_01/he-v1n4.pdf

  43. Wildenbeest JG et al (2013) The impact of haptic feedback quality on the performance of teleoperated assembly tasks. IEEE Trans Haptics 6(2):242–252. doi:10.1109/TOH.2012.19

    Article  Google Scholar 

  44. Williams C, Ratel S (2009) Human muscle fatigue. Taylor & Francis. ISBN:9781134053520

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Neupert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Neupert, C., Hatzfeld, C. (2014). Evaluation of Haptic Systems. In: Hatzfeld, C., Kern, T. (eds) Engineering Haptic Devices. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6518-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6518-7_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6517-0

  • Online ISBN: 978-1-4471-6518-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics