Motivation and Application of Haptic Systems

Part of the Springer Series on Touch and Haptic Systems book series (SSTHS)


This chapter introduces the philosophical and social aspects of the human haptic sense as a basis for systems addressing this human sensory channel. Several definitions of haptics as a perception and interaction modality are reviewed to serve as a common basis in the course of the book. Typical application areas such as telepresence, training, and interaction with virtual environments and communications are presented, and typical haptic systems from these are reviewed. The use of haptics in technical systems is the topic of this book. But what is haptics in the first place? A common and general definition is given as
but this will probably not suffice for the purpose of this book. This chapter gives a detailed insight into the definition of haptics (Sect. 1.2) and introduces four general classes of applications for haptic systems (Sect. 1.3) as the motivation for the design of haptic systems and—ultimately—for this book. Before that, we give a short summary of the philosophical and social aspects of this human sense (Sect. 1.1). These topics are not addressed any further in this book, but should be kept in mind by every engineer working on haptics.


Virtual Environment Haptic Feedback Haptic Interface Tactile Perception Haptic Perception 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Acker A (2011) Anwendungspotential von Telepräsenz-und Teleaktionssystemen für die Präzisionsmontage. Dissertation, Technische Universität München, München.
  2. 2.
    Adams RJ (1999) Stable haptic interaction with virtual environments. PhD thesis, University of Washington, WashingtonGoogle Scholar
  3. 3.
    Ahlberg G et al (2007) Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg 193(6):797–804. doi: 10.1016/j.amjsurg.2006.06.050 CrossRefGoogle Scholar
  4. 4.
    Allin S, Matsuoka Y, Klatzky R (2002) Measuring just noticeable differences for haptic force feedback: implications for rehabilitation. In: Proceedings of the 10th symposium on haptic interfaces for virtual environments and teleoperator systems, Orlando, FL, USA. doi: 10.1109/HAPTIC.2002.998972
  5. 5.
    Anuguelov N (2009) Haptische und akustische Kenngrößen zur Objektivierung und Optimierung der Wertanmutung von Schaltern und Bedienfeldern für den KFZ-Innenraum. Dissertation, Technische Universität Dresden.
  6. 6.
    Asque C, Day A, Laycock S (2012) Cursor navigation using haptics for motion-impaired computer users. In: Haptics: perception, devices, mobility, and communication. Springer, Heidelberg, pp 13–24. doi: 10.1007/978-3-642-31401-8_2
  7. 7.
    Bajka M et al (2009) Evaluation of a new virtual-reality training simulator for hysteroscopy. Surg Endosc 23(9):2026–2033. doi: 10.1007/s00464-008-9927-7 CrossRefGoogle Scholar
  8. 8.
    Battenberg Robotic GmbH & Co. KG (2007) Wahrnehmungen messbar machen. Company information:
  9. 9.
    Bauernschmitt R et al (2005) Towards robotic heart surgery: introduction of autonomous procedures into an experimental surgical telemanipulator system. Int J Med Robot Comput Assist Surg 1(3):74–79. doi: 10.1002/rcs.3010.1002/rcs.30 CrossRefGoogle Scholar
  10. 10.
    Bordegoni M et al (2010) A force and touch sensitive self-deformable haptic strip for exploration and deformation of digital surfaces. In: Kappers AML, Bergmann-Tiest WM, van der Helm CT (eds) Haptics: generating and perceiving tangible sensations. LNCS 6192. Proceed ings of the eurohaptics conference, Amsterdam, NL. Springer, Heidelberg, pp 65–72. doi: 10.1007/978-3-642-14075-4_10
  11. 11.
    Bowman D, Hodges L (1999) Formalizing the design, evaluation, and application of interaction techniques for immersive virtual environments. J Vis Lang Comput 10(1):37–53. doi: 10.1006/jvlc.1998.0111 CrossRefGoogle Scholar
  12. 12.
    Brooks FP et al (1990) Project GROPE—haptic displays for scientific visualization. ACM SIGGRAPH Comput Graph 24:177–185. doi: 10.1145/97880.97899 CrossRefGoogle Scholar
  13. 13.
    Brooks TL (1990) Telerobotic response requirements. In: IEEE international conference on systems, man and cybernetics, Los Angeles, CA, USA. doi: 10.1109/ICSMC.1990.142071
  14. 14.
    Brown L, Brewster S, Purchase H (2006) Multidimensional tactons for non-visual information presentation in mobile devices. In: Conference on human-computer interaction with mobile devices and services, pp 231–238. doi: 10.1145/1152215.1152265
  15. 15.
    Burdea GC, Coiffet P (2003) Virtual reality technology. In: Burdea GC, Coiffet P (eds) Wiley-Interscience, New York, NY, USA. ISBN: 978-0471360896Google Scholar
  16. 16.
    Carbon C-C, Jakesch M (2013) A model for haptic aesthetic processing and its implications for design. Proc IEEE 101(9):2123–2133. doi: 10.1109/JPROC.2012.2219831 CrossRefGoogle Scholar
  17. 17.
    Cholewiak SA, Tan HZ, Ebert DS (2008) Haptic identification of stiffness and force magnitude. In: Symposium on haptic interfaces for virtual environments and teleoperator systems. Reno, NE, USA. doi: 10.1109/HAPTICS.2008.4479918
  18. 18.
    Clark F, Horch K (1986) Kinesthesia. In: Boff KR, Kaufman L, Thomas JP Handbook of perception and human performance. Wiley-Interscience, New York, NY, USA, pp 13.1–13.61. ISBN: 978-0471829577Google Scholar
  19. 19.
    Coles TR, Meglan D, John NW (2010) The role of haptics in medical training simulators: a survey of the state-of-the-art. IEEE Trans Haptics 4:51–66. doi: 10.1109/TOH.2010.19 CrossRefGoogle Scholar
  20. 20.
    Daniel R, McAree P (1998) Fundamental limits of performance for force reflecting teleoperation. Int J Rob Res 17(8):811–830. doi: 10.1177/027836499801700801 CrossRefGoogle Scholar
  21. 21.
    Darian-Smith I, Johnson K (1977) Thermal sensibility and thermoreceptors. J Invest Dermatol 69(1):146–153. doi: 10.1111/1523-1747.ep12497936 CrossRefGoogle Scholar
  22. 22.
    Dennerlein J, Millman P, Howe R (1997) Vibrotactile feedback for industrial telemanipulators. In: 6th Annual symposium on haptic Interfaces for virtual environment and teleoperator systems.
  23. 23.
    Eb Vander Poorten E, Demeester E, Lammertse P (2012) Haptic feedback for medical applications, a survey. In: Actuator conference, Bremen.
  24. 24.
    Enriquez M, MacLean K, Chita C (2006) Haptic phonemes: basic building blocks of haptic communication. In: Proceedings of the 8th international conference on multimodal interfaces (ICMI). Banff, Alberta. ACM, Canada, pp 302–309. doi: 10.1145/1180995.1181053
  25. 25.
    Estevez P et al (2010) A haptic tele-operated system for microassembly. In: Ratchev S (ed) Precision assembly technologies and systems. Springer, Heidelberg, pp 13–20. doi: 10.1007/978-3-642-11598-1_2
  26. 26.
    Fiene J, Kuchenbecker KJ, Niemeyer G (2006) Event-based haptic tapping with grip force compensation. In: IEEE symposium on haptic interfaces for virtual environment and teleoperator systems. doi: 10.1109/HAPTIC.2006.1627063
  27. 27.
    Gall S, Beins B, Feldman J (2001) Psychophysics. The Gale encyclopedia of psychology, Gale. ISBN: 978-0787603724Google Scholar
  28. 28.
    Gault RH (1927) On the upper limit of vibrational frequency that can be recognized by touch. Sci New Ser 65(1686):403–404. doi: 10.1126/science.65.1686.403 Google Scholar
  29. 29.
    Gerling G, Thomas G (2005) The effect of fingertip microstructures on tactile edge perception. In: Haptic interfaces for virtual environment and teleoperator systems, First joint eurohaptics conference and symposium on WHC, pp 63–72. doi: 10.1109/WHC.2005.129
  30. 30.
    Getzinger G (2006) Haptik—rekonstruktion eines verlustes. Naturerkenntnis, Hautsinn. Profil, Wien, p 146. ISBN: 3-89019-521-0Google Scholar
  31. 31.
    Gilson R, Redden E, Elliott L (2007) Remote tactile displays for future soldiers. Technical report, Aberdeen Proving Ground, MD. U.S. Army Research Laboratory, USA
  32. 32.
    Goertz RC (1964) Manipulator systems development at ANL. In: Proceedings of the 12th conference on remote systems technology, ANS, pp 117–136Google Scholar
  33. 33.
    Grunwald M (2008) Human haptic perception: basics and applications. Birkhäuser, Switzerland. ISBN: 3764376112Google Scholar
  34. 34.
    Grunwald M (2008) Haptic perception in anorexia nervosa. In: Grünwald M (ed) Human haptic perception: basics and applications. Birkhäuser, Basel. ISBN: 3764376112Google Scholar
  35. 35.
    Grunwald M et al (2001) Haptic perception in anorexia nervosa before and after weight gain. J Clin Exp Neuropsychol 23(4):520–529. doi: 10.1076/jcen.23.4.520.1229 CrossRefGoogle Scholar
  36. 36.
    Guthart G, Salisbury J Jr (2000) The intuitive telesurgery system: overview and application. In: IEEE international conference on robotics and automation (ICRA), San Francisco, CA, USA, vol 1, pp 618–621. doi: 10.1109/ROBOT.2000.844121
  37. 37.
    Haptex (2007) Grant No. IST-6549, last visited 07.03.2012. European Union.
  38. 38.
    HaptiMap—Haptic, audio and visual interfaces for maps and location based services (2013) European Union Grant No. FP7-ICT-224675.
  39. 39.
    Hatzfeld C, Kern TA, Werthschüzky R (2010) Improving the prediction of haptic impression user ratings using perception-based weighting methods: experimental evaluation. In: Kappers AML et al (ed) Haptics: generating and perceiving tangible sensations, LNCS 6191. Proceedings of the eurohaptics conference, Amsterdam, NL. Springer, Heidelberg, pp 93–98. doi: 10.1007/978-3-642-14064-8_14
  40. 40.
    Hogan N (1989) Controlling impedance at the man/machine interface. In: IEEE international conference on robotics and automation (ICRA), Scottsdale, AZ, USA, pp 1626–1631. doi: 10.1109/ROBOT.1989.100210
  41. 41.
    Hollins M (2002) Touch and haptics. In: Pashler H (ed) Steven’s handbook of experimental psychology. Wiley, New York, pp 585–618. ISBN: 978–0471377771. doi: 10.1002/0471214426.pas0114
  42. 42.
    Ino S et al (1993) A tactile display for presenting quality of materials by changing the temperature of skin surface. In: IEEE international workshop on robot and human communication. doi: 10.1109/ROMAN.1993.367718
  43. 43.
    Ishii H (2004) Bottles: a transparent interface as a tribute to Mark Weiser. In: IEICE: transactions on information and systems, pp E87–D.6. doi: 10.1145/346152.346159
  44. 44.
    ISO 9241 (2011) Ergonomics of human system interaction—part 910: framework for tactile and haptic interaction. ISOGoogle Scholar
  45. 45.
    Jagodzinski R, Wintergerst G (2009) A toolkit for developing haptic interfaces—control dial based on electromagnetic brake. In: UIST, Victoria, BC, CA.
  46. 46.
    Jandura L, Srinivasan M (1994) Experiments on human performance in torque discrimination and control. In: Dynamic systems and control, ASME, DSC-55 1, pp 369–375.
  47. 47.
    Johansson G (2008) Haptics as a substitute for vision. In: Hersh MA, Johnson MA (eds) Assistive technology for visually impaired and blind people. Springer, Heidelberg, pp 135–166. ISBN: 978-1846288661Google Scholar
  48. 48.
    Jones L, Berris M (2002) The psychophysics of temperature perception and thermal interface design. In: 10th symposium on haptic interfaces for virtual environments and teleoperator systems, Orlando, FL, USA. doi: 10.1109/HAPTIC.2002.998951
  49. 49.
    Kant I (1983) Anthropologie in pragmatischer Hinsicht. Philosophische anthropologie, Charakter. Reclam, Stuttgart, p 389. ISBN: 3-15-007541-6Google Scholar
  50. 50.
    Kassner S (2013) Haptische mensch-maschine-schnittstelle für ein laparoskopisches Chirurgie-system. Dissertation, Technische Universität Darmstadt.
  51. 51.
    Kern T (2010) Requirements and design considerations for the measurement of haptic object properties. In: Linz A (ed) Procedia engineering. Proceedings of the eurosensors conference, vol 5, pp 592–596. doi: 10.1016/j.proeng.2010.09.179
  52. 52.
    Kim S et al (2012) Route guidance modality for elder driver navigation. In: Pervasive computing, LNCS 7319. Springer, Heidelberg, pp 179–196. doi: 10.1007/978-3-642-31205-2_12
  53. 53.
    King C-H et al (2009) Tactile feedback induces reduced grasping force in robot-assisted surgery. IEEE Trans Haptics 2(2):103–110. doi: 10.1109/TOH.2009.4 CrossRefGoogle Scholar
  54. 54.
    Kirkpatrick A, Douglas S (2002) Application-based evaluation of haptic interfaces. In: 10th symposium on haptic interfaces for virtual environment and teleoperator systems, Orlando, FL, USA, pp 32–39. doi: 10.1109/HAPTIC.2002.998938
  55. 55.
    Kruger L, Friedman MP, Carterette EC (eds) (1996) Pain and touch. Academic Press, Maryland HeightsGoogle Scholar
  56. 56.
    Lederman SJ, Klatzky RL (2009) Haptic perception: a tutorial. Attention Percept Psychophysics 71(7):1439. doi: 10.3758/APP.71.7.1439
  57. 57.
    Liedecke C, Baumann G, Reuss H-C (2014) Potential of the foot as a haptic interface for future communication and vehicle controlling. In: 10th ITS European congress, Helsinki, FINGoogle Scholar
  58. 58.
    Loomis JM, Lederman SJ (1986) Tactual perception. Handb Percept Human Perform 2: 2Google Scholar
  59. 59.
    My Frebble (2014) Last visited March 2014.
  60. 60.
    Néret G (1998) Erotik in der Kunst des 20. Jahrhunderts. ErotikMotiv; Kunst; Geschichte 1900–199213.1c. Taschen, Tokyo, p 200. ISBN: 3-8228-7853-7Google Scholar
  61. 61.
    Nitsch V, Färber B (2012) A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems. IEEE Trans Haptics 6:387–398. doi: 10.1109/ToH.2012.62 CrossRefGoogle Scholar
  62. 62.
    Norrsell U et al (2001) Tactile directional sensibility and diabetic neuropathy. Muscle Nerve 24(11):1496–1502. doi: 10.1002/mus.1174 CrossRefGoogle Scholar
  63. 63.
    Pott P, Scharf H, Schwarz M (2005) Today’s state of the art in surgical robotics. Comput Aided Surg 10(2):101–132. doi: 10.1080/10929080500228753 CrossRefGoogle Scholar
  64. 64.
    Pott P, Schwarz M (2010) State of the art of medical robotics—areas of application. In: Jahrestagung der DGBMT 44Google Scholar
  65. 65.
    Prescher D, Weber G, Spindler M (2010) A tactile windowing system for blind users. In: Proceedings of the 12th international ACM SIGACCESS conference on computers and accessibility. ACM, Orlando, pp 91–98. doi: 10.1145/1878803.1878821
  66. 66.
    Rausch J (2012) Entwicklung und Anwendung miniaturisierter piezoresistiver Dehnungsmesselemente. Dissertation, Technische Universität Darmstadt.
  67. 67.
    Reisinger J (2009) Parametrisierung der Haptik von handbetätigten Stellteilen. Dissertation, Technische UniversitätMünchen.
  68. 68.
    Riener R et al (2002) Orthopädischer trainingssimulator mit haptischem feedback. Automatisierungstechnik 50:296–301. doi: 10.1524/auto.2002.50.6.296
  69. 69.
    Röse A (2011) Parallelkinematische Mechanismen zum intrakoporalen Einsatz in der laparoskopischen Chirurgie. Dissertation, Technische Universität Darmstadt.
  70. 70.
    Rösler F, Battenberg G, Schüttler F (2009) Subjektive Empfindungen und objektive Charakteristika von Bedienelementen. Automobiltechnische Zeitschrift 4:292–297. doi: 10.1007/BF03222068
  71. 71.
    Ryu J et al (2010) Vibrotactile feedback for information delivery in the vehicle. IEEE Trans Haptics 3(2):138–149. doi: 10.1109/TOH.2010.1 CrossRefGoogle Scholar
  72. 72.
    Samur E (2012) Performance metrics for haptic interfaces. Springer, Heidelberg. ISBN 978–1447142249. doi: 10.1007/978-1-4471-4225-6
  73. 73.
    Sato K, Maeno T (2012) Presentation of sudden temperature change using spatially divided warm and cool stimuli. In: Haptics: perception, devices, mobility, and communication. Springer, Heidelberg, pp 457–468. doi: 10.1007/978-3-642-31401-8_41
  74. 74.
    Sato M, Poupyrev I, Harrison C (2012) Touché: enhancing touch interaction on humans, screens, liquids, and everyday objects. In: Proceedings of the 2012 ACMannual conference on human factors in computing systems, pp 483–492. doi: 10.1145/2207676.2207743
  75. 75.
    Schlaak HF et al (2008) A novel laparoscopic instrument with multiple degrees of freedom and intuitive control. In: 4th European conference of the international federation for medical and biological engineering, Antwerpen. doi: 10.1007/978-3-540-89208-3_394
  76. 76.
    Shah A et al (2010) How to build an inexpensive 5-DOF haptic device using two novint falcons. In: Kappers AML, Bergmann-Tiest WM, van der Helm FC (eds) Haptics: generating and perceiving tangible sensations, LNCS 6191. Proceedings of the eurohaptics conference, Amsterdam, NL. Springer, Heidelberg, pp 136–143. doi: 10.1007/978-3-642-14064-8_21
  77. 77.
    Shimoga K (1993) A survey of perceptual feedback issues in dexterous telemanipulation part I. Finger force feedback. In: Proceedings of the IEEE virtual reality annual international symposium, Seattle, WA, USA, pp 263–270. doi: 10.1109/VRAIS.1993.380770
  78. 78.
    Shimoga K (1993) A survey of perceptual feedback issues in dexterous telemanipulation part II. Finger touch feedback. In: Proceedings of the IEEE virtual reality annual international symposium, Seattle, WA, USA, pp 271–279. doi: 10.1109/VRAIS.1993.380769
  79. 79.
    Sinclair M, Pahud M, Benko H (2013) Touch mover: actuated 3D touchscreen with haptic feedback. In: Proceedings of the 2013 ACM international conference on interactive tabletops and surfaces. ACM, pp 287–296. doi: 10.1145/2512349.2512805
  80. 80.
    Spence C, Ho C (2008) Tactile and multisensory spatial warning signals for drivers. IEEE Trans Haptics 1:121–129. doi: 10.1109/TOH.2008.14 CrossRefGoogle Scholar
  81. 81.
    Stevens SS (1975) Psychophysics. In: Stevens G (ed) Piscataway. Transaction Books, USA. ISBN: 978-0887386435Google Scholar
  82. 82.
    Summers I (ed) (1996) Tactile aids for the hearing impaired. Whurr, London, GB. ISBN 978-1870332170Google Scholar
  83. 83.
    Sutherland GR et al (2013) The evolution of neuroArm. Neurosurgery 72:A27–A32. doi: 10.1227/NEU.0b013e318270da19 CrossRefGoogle Scholar
  84. 84.
    Tan H, Rabinowitz W (1996) A new multi-finger tactual display. J Acoust Soc Am 99(4):2477–2500. doi: 10.1121/1.415560 Google Scholar
  85. 85.
    Tan H et al (2003) Temporal masking of multidimensional tactual stimuli. J Acoust Soc Am, Part 1116(9):3295–3308. doi: 10.1121/1.1623788
  86. 86.
    Verrillo RT, Gescheider GA (1992) Perception via the sense of touch. In: Summers IR (ed) Tactile aids for the hearing impaired. Whurr, London, pp 1–36. ISBN: 978-1-870332-17-0Google Scholar
  87. 87.
    Vasarhelyi G et al (2006) Effects of the elastic cover on tactile sensor arrays. Sens Actuators A Phys 132(1):245–251. doi: 10.1016/j.sna.2006.01.009
  88. 88.
    Wagner C, Stylopoulos N, Howe R (2002) The role of force feedback in surgery: analysis of blunt dissection. In: 10th symposium on haptic interfaces for virtual environment and teleoperator systems. doi: 10.1109/HAPTIC.2002.998943
  89. 89.
    Westebring-van der Putten EP et al (2008) Haptics in minimally invasive surgery—a review. Minim Invasive Ther Allied Technol 17(1):3–16. doi: 10.1080/13645700701820242 CrossRefGoogle Scholar
  90. 90.
    Wilde E et al (2013) Technisch vermitteltes soziales Handeln im Alter-ein Gestaltungsprozess. In: Lebensqualität im Wandel von Demografie und Technik. doi: 10.1007/s10278-011-9416-8
  91. 91.
    Wolf U (2007) Aristoteles’ nikomachische ethik. Wiss. Buchges., DarmstadtGoogle Scholar
  92. 92.
    Yang X et al (2007) Hand tele-rehabilitation in haptic virtual environment. In: IEEE international conference on robotics and biomimetics (ROBIO). Sanya C, pp 145–149. doi: 10.1109/ROBIO.2007.4522150

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Institute of Electromechanical DesignTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Continental Automotive GmbHBabenhausenGermany

Personalised recommendations