Features and Mechanisms of Diphasic Dyskinesia in Parkinson’s Disease

  • Marcelo Merello
  • Inés Trigo Damas
  • José A. Obeso


Levodopa-induced dyskinesia is normally assessed based on the course of the appearance of their symptoms. Diphasic dyskinesia (DD) usually appears at the beginning and at the end, but not at the peak, of the levodopa effect in long-term treated Parkinson’s disease patients. The most commonly affected subjects with this form of dyskinesia are those who have an early onset of the disease, approaching 20 % of globally treated parkinsonian patients. Typically, they are present in the lower limbs and exhibit rhythmic and sometime stereotypic movement patterns. In the past, DD were a serious management problem and often associated with severe dysautonomic manifestations. Current pharmacological trends to avoid high levodopa use have reduced the incidence of very troublesome DD. When severe, surgical approach may be considered, since pallidotomy typically resolves the movements. In a broader sense, the net predominance of the lower limb in DD is a fascinating mystery of which resolution could lead to important advances in the functional anatomy of the basal ganglia and Parkinson’s disease.


Diphasic dyskinesia Low dose levodopa Graft induced dyskinesia Serotonin Dystonia improvement dystonia Stereotyped lower limb dyskinesia 


  1. 1.
    Del Sorbo F, Albanese A. Levodopa-induced dyskinesias and their management. J Neurol. 2008;255 Suppl 4:32–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Manson A, Stirpe P, et al. Levodopa-induced-dyskinesias clinical features, incidence, risk factors, management and impact on quality of life. J Parkinsons Dis. 2012;2(3):189–98.PubMedGoogle Scholar
  3. 3.
    Luquin MR, Vaamonde J, et al. Levodopa and 3-O-methyldopa plasma levels in parkinsonian patients with stable and fluctuating motor response. Clin Neuropharmacol. 1989;12(1):46–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Obeso JA, Grandas F, et al. Motor complications associated with chronic levodopa therapy in Parkinson’s disease. Neurology. 1989;39(11 Suppl 2):11–9.PubMedGoogle Scholar
  5. 5.
    Nutt JG. Levodopa-induced dyskinesia: review, observations, and speculations. Neurology. 1990;40(2):340–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Fahn S. The spectrum of levodopa-induced dyskinesias. Ann Neurol. 2000;47(4 Suppl 1):S2–9; discussion S9–11.PubMedGoogle Scholar
  7. 7.
    Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain. 2000;123(Pt 11):2297–305.PubMedCrossRefGoogle Scholar
  8. 8.
    Murphy MJ. L-dopa induced dyskinesias in asymmetrical parkinsonism. Acta Neurol Latinoam. 1979;25(1–2):47–52.PubMedGoogle Scholar
  9. 9.
    Marconi R, Lefebvre-Caparros D, et al. Levodopa-induced dyskinesias in Parkinson’s disease phenomenology and pathophysiology. Mov Disord. 1994;9(1):2–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Lhermitte F, Agid Y, et al. “Beginning and end of dose” dyskinesias caused by L-DOPA. Rev Neurol (Paris). 1977;133(5):297–308.Google Scholar
  11. 11.
    Tolosa ES, Maritn WE, et al. Letter: Dyskinesias during levodopa therapy. Lancet. 1975;1(7921):1381–2.PubMedCrossRefGoogle Scholar
  12. 12.
    Muenter MD, Sharpless NS, et al. Patterns of dystonia (“I-D-I” and “D-I-D-”) in response to l-dopa therapy for Parkinson’s disease. Mayo Clin Proc. 1977;52(3):163–74.PubMedGoogle Scholar
  13. 13.
    Muenter MD, Tyce GM. L-dopa therapy of Parkinson’s disease: plasma L-dopa concentration, therapeutic response, and side effects. Mayo Clin Proc. 1971;46(4):231–9.PubMedGoogle Scholar
  14. 14.
    Lhermitte F, Agid Y, et al. Onset and end-of-dose levodopa-induced dyskinesias. Possible treatment by increasing the daily doses of levodopa. Arch Neurol. 1978;35(5):261–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Jankovic J. Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord. 2005;20 Suppl 11:S11–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Vidailhet M, Bonnet AM, et al. Do parkinsonian symptoms and levodopa-induced dyskinesias start in the foot? Neurology. 1994;44(9):1613–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Ruzicka E, Zarubova K, et al. “Silly walks” in Parkinson’s disease: unusual presentation of dopaminergic-induced dyskinesias. Mov Disord. 2011;26(9):1782–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Merello M, Lees AJ. Beginning-of-dose motor deterioration following the acute administration of levodopa and apomorphine in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1992;55(11):1024–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Luquin MR, Scipioni O, et al. Levodopa-induced dyskinesias in Parkinson’s disease: clinical and pharmacological classification. Mov Disord. 1992;7(2):117–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Chapuis S, Ouchchane L, et al. Impact of the motor complications of Parkinson’s disease on the quality of life. Mov Disord. 2005;20(2):224–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Barbeau A. Letter: Diphasic dyskinesia during levodopa therapy. Lancet. 1975;1(7909):756.PubMedCrossRefGoogle Scholar
  22. 22.
    Quinn N, Critchley P, et al. Young onset Parkinson’s disease. Mov Disord. 1987;2(2):73–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Warren Olanow C, Kieburtz K, et al. Factors predictive of the development of Levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord. 2013;28(8):1064–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Olanow CW, Gracies JM, et al. Clinical pattern and risk factors for dyskinesias following fetal nigral transplantation in Parkinson’s disease: a double blind video-based analysis. Mov Disord. 2009;24(3):336–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Quinn N, Marsden CD, et al. Complicated response fluctuations in Parkinson’s disease: response to intravenous infusion of levodopa. Lancet. 1982;2(8295):412–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Vaamonde J, Luquin MR, et al. Subcutaneous lisuride infusion in Parkinson’s disease. Response to chronic administration in 34 patients. Brain. 1991;114(Pt 1B):601–17.PubMedCrossRefGoogle Scholar
  27. 27.
    Krack P, Pollak P, et al. From off-period dystonia to peak-dose chorea. The clinical spectrum of varying subthalamic nucleus activity. Brain. 1999;122(Pt 6):1133–46.PubMedCrossRefGoogle Scholar
  28. 28.
    Carlsson T, Carta M, et al. Serotonin neuron transplants exacerbate L-DOPA-induced dyskinesias in a rat model of Parkinson’s disease. J Neurosci. 2007;27(30):8011–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Carlsson T, Carta M, et al. Impact of grafted serotonin and dopamine neurons on development of L-DOPA-induced dyskinesias in parkinsonian rats is determined by the extent of dopamine neuron degeneration. Brain. 2009;132(Pt 2):319–35.PubMedGoogle Scholar
  30. 30.
    Durif F, Deffond D, et al. Apomorphine and diphasic dyskinesia. Clin Neuropharmacol. 1994;17(1):99–102.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee JY, Cho J, et al. Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease. Mov Disord. 2011;26(1):73–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Bergman H, Wichmann T, et al. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994;72(2):507–20.PubMedGoogle Scholar
  33. 33.
    Brown P, Oliviero A, et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci. 2001;21(3):1033–8.PubMedGoogle Scholar
  34. 34.
    Alonso-Frech F, Zamarbide I, et al. Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain. 2006;129(Pt 7):1748–57.PubMedCrossRefGoogle Scholar
  35. 35.
    Lopez-Azcarate J, Tainta M, et al. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J Neurosci. 2010;30(19):6667–77.PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez-Oroz MC, Lopez-Azcarate J, et al. Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson’s disease. Brain. 2011;134(Pt 1):36–49.PubMedCrossRefGoogle Scholar
  37. 37.
    Brown P, Williams D. Basal ganglia local field potential activity: character and functional significance in the human. Clin Neurophysiol. 2005;116(11):2510–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Williams D, Kuhn A, et al. The relationship between oscillatory activity and motor reaction time in the parkinsonian subthalamic nucleus. Eur J Neurosci. 2005;21(1):249–58.PubMedCrossRefGoogle Scholar
  39. 39.
    Meissner W, Ravenscroft P, et al. Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA-lesioned rat in the presence of excessive extracellular striatal dopamine. Neurobiol Dis. 2006;22(3):586–98.PubMedCrossRefGoogle Scholar
  40. 40.
    Quiroga-Varela A, Walters JR, et al. What basal ganglia changes underlie the parkinsonian state? The significance of neuronal oscillatory activity. Neurobiol Dis. 2013;58:242–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Alam M, Capelle HH, et al. Effect of deep brain stimulation on levodopa-induced dyskinesias and striatal oscillatory local field potentials in a rat model of Parkinson’s disease. Brain Stimul. 2014;7(1):13–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Halje P, Tamte M, et al. Levodopa-induced dyskinesia is strongly associated with resonant cortical oscillations. J Neurosci. 2012;32(47):16541–51.PubMedCrossRefGoogle Scholar
  43. 43.
    Alegre M, Lopez-Azcarate J, et al. Subthalamic activity during diphasic dyskinesias in Parkinson’s disease. Mov Disord. 2012;27(9):1178–81.PubMedCrossRefGoogle Scholar
  44. 44.
    Filipovic SR, Bhatia KP, et al. 1-Hz repetitive transcranial magnetic stimulation and diphasic dyskinesia in Parkinson’s disease. Mov Disord. 2013;28(2):245–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Moore AP. Impaired sensorimotor integration in parkinsonism and dyskinesia: a role for corollary discharges? J Neurol Neurosurg Psychiatry. 1987;50(5):544–52.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    O’Suilleabhain P, Bullard J, et al. Proprioception in Parkinson’s disease is acutely depressed by dopaminergic medications. J Neurol Neurosurg Psychiatry. 2001;71(5):607–10.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Blesa J, Pifl C, et al. The nigrostriatal system in the presymptomatic and symptomatic stages in the MPTP monkey model: a PET, histological and biochemical study. Neurobiol Dis. 2012;48(1):79–91.PubMedCrossRefGoogle Scholar
  48. 48.
    Kordower JH, Olanow CW, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain. 2013;136(Pt 8):2419–31.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Lozano AM, Lang AE, et al. Effect of GPi pallidotomy on motor function in Parkinson’s disease. Lancet. 1995;346(8987):1383–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Baron MS, Vitek JL, et al. Treatment of advanced Parkinson’s disease by posterior GPi pallidotomy: 1-year results of a pilot study. Ann Neurol. 1996;40(3):355–66.PubMedCrossRefGoogle Scholar
  51. 51.
    Narabayashi H, Yokochi F, et al. Levodopa-induced dyskinesia and thalamotomy. J Neurol Neurosurg Psychiatry. 1984;47(8):831–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Krack P, Hamel W, et al. Surgical treatment of Parkinson’s disease. Curr Opin Neurol. 1999;12(4):417–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Marcelo Merello
    • 1
    • 2
  • Inés Trigo Damas
    • 3
  • José A. Obeso
    • 3
  1. 1.Raul Carrea Institute for Neurological Research (FLENI), Universidad Católica Argentina, CONICETBuenos Aires (1428)Argentina
  2. 2.Raul Carrea Institute for Neurological ResearchBuenos AiresArgentina
  3. 3.Movement Disorders Laboratory, Neuroscience DepartmentCenter for Applied Medical Research (CIMA), University of NavarraPamplonaSpain

Personalised recommendations