Skip to main content

New Clinical Trials for Levodopa-Induced Dyskinesia

  • Chapter
  • First Online:
Levodopa-Induced Dyskinesia in Parkinson's Disease

Abstract

Ongoing clinical trials are looking at new strategies for treatment of levodopa-induced dyskinesia (LID). While the pathophysiology of LID is still not completely understood, preclinical studies have provided more insights into the underlying mechanisms. To date, however, translation to human therapeutic trials has generally been disappointing. Two main therapeutic strategies are recognized: (1) agents that may prevent the development of dyskinesia and can be used in early PD and (2) interventions that reduce established dyskinesia in advanced PD.

As LID are thought to relate to chronic pulsatile stimulation of dopamine receptors, continuous dopaminergic stimulation might reduce established dyskinesia and possibly prevent or delay the appearance. Ongoing clinical trials are investigating novel dopamine preparations with a more stable delivery that might also allow reductions in oral levodopa. The effect of levodopa-sparing agents on LID is also being investigated, both in early and advanced PD. Moreover, non-dopaminergic agents are being studied as add-on therapies in established LID. Such agents are also being studied in early PD, either as monotherapy to improve parkinsonian symptoms without causing dyskinesia or as add-on treatments to prevent development of dyskinesia in levodopa-treated patients.

In this chapter, we will review recently published and ongoing Phase II–IV clinical trials for the treatment of LID. As the research field is constantly evolving, this chapter will be updated regularly through a website (LINK), which will include a database of ongoing studies and recent results from clinical trials. This is meant to be a practical tool for the clinician to follow new developments in the field of LID treatment and to have an easy access to information on ongoing trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Durif F, Debilly B, Galitzky M, Morand D, Viallet F, Borg M, et al. Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology. 2004;62(3):381–8.

    Article  PubMed  CAS  Google Scholar 

  2. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med. 2000;342(20):1484–91.

    Article  PubMed  CAS  Google Scholar 

  3. Hauser RA, Rascol O, Korczyn AD, Jon Stoessl A, Watts RL, Poewe W, et al. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or levodopa. Mov Disord. 2007;22(16):2409–17.

    Article  PubMed  Google Scholar 

  4. Holloway RG, Shoulson I, Fahn S, Kieburtz K, Lang A, Marek K, et al. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch Neurol. 2004;61(7):1044–53.

    PubMed  Google Scholar 

  5. Holloway R, Marek K, Biglan K, Dick A, Fahn S, Julian-Baros E, et al. Long-term effect of initiating pramipexole vs levodopa in early Parkinson disease. Arch Neurol. 2009;66(5):563–70.

    Article  Google Scholar 

  6. Lees AJ, Katzenschlager R, Head J, Ben-Shlomo Y. Ten-year follow-up of three different initial treatments in de-novo PD: a randomized trial. Neurology. 2001;57(9):1687–94.

    Article  PubMed  CAS  Google Scholar 

  7. Katzenschlager R, Head J, Schrag A, Ben-Shlomo Y, Evans A, Lees AJ, et al. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology. 2008;71(7):474–80.

    Article  PubMed  CAS  Google Scholar 

  8. Product Monograph. PRDostinex® (cabergoline) [Internet]. Pfizer Canada Inc;2013. [Cited 2014 Jan 8]. Available from: http://www.pfizer.ca/en/our_products/products/monograph/159

  9. Bracco F, Battaglia A, Chouza C, Dupont E, Gershanik O, Marti Masso JF, et al. The long-acting dopamine receptor agonist cabergoline in early Parkinson’s disease: final results of a 5-year, double-blind, levodopa-controlled study. CNS Drugs. 2004;18(11):733–46.

    Article  PubMed  CAS  Google Scholar 

  10. Inzelberg R, Schechtman E, Nisipeanu P. Cabergoline, pramipexole and ropinirole used as monotherapy in early Parkinson’s disease: an evidence-based comparison. Drugs Aging. 2003;20(11):847–55.

    Article  PubMed  CAS  Google Scholar 

  11. Stocchi F, Giorgi L, Hunter B, Schapira AH. PREPARED: comparison of prolonged and immediate release ropinirole in advanced Parkinson’s disease. Mov Disord. 2011;26(7):1259–65.

    Article  PubMed  Google Scholar 

  12. Watts RL, Lyons KE, Pahwa R, Sethi K, Stern M, Hauser RA, et al. Onset of dyskinesia with adjunct ropinirole prolonged-release or additional levodopa in early Parkinson’s disease. Mov Disord. 2010;25(7):858–66.

    Article  PubMed  Google Scholar 

  13. Poewe W, Rascol O, Barone P, Hauser RA, Mizuno Y, Haaksma M, et al. Extended-release pramipexole in early Parkinson disease: a 33-week randomized controlled trial. Neurology. 2011;77(8):759–66.

    Article  PubMed  CAS  Google Scholar 

  14. Schapira AH, Barone P, Hauser RA, Mizuno Y, Rascol O, Busse M, et al. Extended-release pramipexole in advanced Parkinson disease: a randomized controlled trial. Neurology. 2011;77(8):767–74.

    Article  PubMed  CAS  Google Scholar 

  15. Watts RL, Jankovic J, Waters C, Rajput A, Boroojerdi B, Rao J. Randomized, blind, controlled trial of transdermal rotigotine in early Parkinson disease. Neurology. 2007;68(4):272–6.

    Article  PubMed  CAS  Google Scholar 

  16. Poewe WH, Rascol O, Quinn N, Tolosa E, Oertel WH, Martignoni E, et al. Efficacy of pramipexole and transdermal rotigotine in advanced Parkinson’s disease: a double-blind, double-dummy, randomised controlled trial. Lancet Neurol. 2007;6(6):513–20.

    Article  PubMed  CAS  Google Scholar 

  17. Fox SH, Katzenschlager R, Lim SY, Ravina B, Seppi K, Coelho M, et al. The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2011;26 Suppl 3:S2–41.

    Article  PubMed  Google Scholar 

  18. Jahangirvand A, Rajput A. Early use of amantadine to prevent or delay onset of levodopa- induced dyskinesia in Parkinson’s disease (abstract), 2013. MDS Conference, Sydney.

    Google Scholar 

  19. Samadi P, Grégoire L, Rouillard C, Bédard PJ, Di Paolo T, Lévesque D. Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann Neurol. 2006;59(2):282–8.

    Article  PubMed  CAS  Google Scholar 

  20. Mischley LK, McNames J. A case report of fish oil for the treatment of levodopa-induced dyskinesia (abstract), 2013. MDS Conference, Sydney.

    Google Scholar 

  21. Chung KA, Lobb BM, Nutt JG, McNames J, Horak F. Objective measurement of dyskinesia in Parkinson’s disease using a force plate. Mov Disord. 2010;25(5):602–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nutts J. Pharmacokinetics and pharmacodynamics of levodopa. Mov Disord. 2008;23(S3):S580–4.

    Article  Google Scholar 

  23. Fernandez HH, Vanagunas A, Odin P, Espay AJ, Hauser RA, Standaert DG, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s disease open-label study: interim results. Parkinsonism Relat Disord. 2013;19(3):339–45.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zibetti M, Merola A, Ricchi V, Marchisio A, Artusi CA, Rizzi L, et al. Long-term duodenal levodopa infusion in Parkinson’s disease: a 3-year motor and cognitive follow-up study. J Neurol. 2013;260(1):105–14.

    Article  PubMed  CAS  Google Scholar 

  25. Nyholm D, Klangemo K, Johansson A. Levodopa/carbidopa intestinal gel infusion long-term therapy in advanced Parkinson’s disease. Eur J Neurol. 2012;19(8):1079–85.

    Article  PubMed  CAS  Google Scholar 

  26. Olanow CW, Kieburtz K, Odin P, Espay AJ, Standaert DG, Fernandez HH, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014;13(2):141–9. Epub 2013 Dec 19.

    Article  PubMed  CAS  Google Scholar 

  27. Odin P, Espay A, Vanagunas A, Hauser R, Fernandez H, Standaert D, et al. Interim Results from an International, open-label study of levodopa-carbidopa intestinal gel in patients with advanced Parkinson’s disease: efficacy analyses by subgroups (abstract). [Internet] AAN annual meeting, March 2013. [Cited 2014 Jan 8]. Available from: http://www.abstracts2view.com/aan/view.php?nu=AAN13L_P01.060

  28. Reddy P, Martinez-Martin P, Todorova A, Antonini A, Odin P, Martin A, et al. The EuroInf study: a multi-centre European comparative study of apomorphine versus intrajejunal levodopa infusion in a real life cohort of Parkinson’s patients (abstract). MDS Conference, Sydney.

    Google Scholar 

  29. P Reddy, P Martinez-Martin, P Odin, A Antonini, D Calandrella, M Pilleri, et al. The EUROINF study: a multicentre European comparative case control study of apomorphine versus intrajejunal levodopa infusion in advanced parkinson’s disease (abstract). [Internet] [Cited 2014 Jan 8]. Available from: http://www.epda.eu.com/en/resources/publications-and-web-database/?entryid2=24577&cid=32343

  30. Hauser RA, Hsu A, Kell S, Espay AJ, Sethi K, Stacy M, et al. Extended-release carbidopa-levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: a phase 3 randomised, double-blind trial. Lancet Neurol. 2013;12(4):346–56.

    Article  PubMed  CAS  Google Scholar 

  31. Press release. Moretti AJ. Depomed reports top line data for phase 2 study in Parkinson’s disease. [Internet] Depomed, inc; 2012. [Cited 2014 Jan 8] Available from: http://investor.depomedinc.com/phoenix.zhtml?c=97276&p=irol-newsArticle&ID=1755781&highlight=

  32. LeWitt P, Friedman H, Giladi N, Gurevich T, Shabtai H, Djaldetti R, et al. Sustained-release carbidopa-levodopa (accordion pill) in patients with advanced Parkinson’s disease: Pharmacokinetic and clinical experience (abstract), 2013. MDS Conference, Sydney.

    Google Scholar 

  33. Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord. 2006;21 Suppl 14:S290–304.

    Article  PubMed  Google Scholar 

  34. Vitek JL, Bakay RA, Freeman A, Evatt M, Green J, McDonald W, et al. Randomized trial of pallidotomy versus medical therapy for Parkinson’s disease. Ann Neurol. 2003;53(5):558–69.

    Article  PubMed  Google Scholar 

  35. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362(22):2077–91.

    Article  PubMed  CAS  Google Scholar 

  36. Weaver FM, Follett KA, Stern M, Luo P, Harris CL, Hur K, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012;79(1):55–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12(1):37–44.

    Article  PubMed  Google Scholar 

  38. Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368(7):610–22.

    Article  PubMed  CAS  Google Scholar 

  39. Giladi N, Boroojerdi B, Korczyn AD, Burn DJ, Clarke CE, Schapira AH, et al. Rotigotine transdermal patch in early Parkinson’s disease: a randomized, double-blind, controlled study versus placebo and ropinirole. Mov Disord. 2007;22(16):2398–404.

    Article  PubMed  Google Scholar 

  40. LeWitt PA, Lyons KE, Pahwa R, SP 650 Study Group. Advanced Parkinson disease treated with rotigotine transdermal system: PREFER Study. Neurology. 2007;68(16):1262–7.

    Article  PubMed  CAS  Google Scholar 

  41. Elmer LW, Surmann E, Boroojerdi B, Jankovic J. Long-term safety and tolerability of rotigotine transdermal system in patients with early-stage idiopathic Parkinson’s disease: a prospective, open-label extension study. Parkinsonism Relat Disord. 2012;18(5):488–93.

    Article  PubMed  Google Scholar 

  42. LeWitt PA, Boroojerdi B, Surmann E, Poewe W, SP716 Study Group. Rotigotine transdermal system for long-term treatment of patients with advanced Parkinson’s disease: results of two open-label extension studies, CLEOPATRA-PD and PREFER. J Neural Transm. 2013;120(7):1069–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Antonini A, Isaias IU, Rodolfi G, Landi A, Natuzzi F, Siri C, et al. A 5-year prospective assessment of advanced Parkinson disease patients treated with subcutaneous apomorphine infusion or deep brain stimulation. J Neurol. 2011;258(4):579–85.

    Article  PubMed  CAS  Google Scholar 

  44. De Gaspari D, Siri C, Landi A, Cilia R, Bonetti A, Natuzzi F, et al. Clinical and neuropsychological follow up at 12 months in patients with complicated Parkinson’s disease treated with subcutaneous apomorphine infusion or deep brain stimulation of the subthalamic nucleus. J Neurol Neurosurg Psychiatry. 2006;77(4):450–3.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Drapier S, Gillioz AS, Leray E, Péron J, Rouaud T, Marchand A, et al. Apomorphine infusion in advanced Parkinson’s patients with subthalamic stimulation contraindications. Parkinsonism Relat Disord. 2012;18(1):40–4.

    Article  PubMed  Google Scholar 

  46. Rambour M, Moreau C, Devos D, Kreisler A, Mutez E, Simonin C, et al. Continuous subcutaneous infusion of apomorphine in Parkinson’s disease: Retrospective analysis of a series of 81 patients (abstract), 2013. In: MDS Conference, Sydney.

    Google Scholar 

  47. Barone P, Fernandez H, Ferreira J, Mueller T, Saint-Hilaire M, Stacy M, et al. Safinamide as an add-on therapy to a stable dose of a single dopamine agonist: results from a randomized, placebo-controlled, 24-week multicenter trial in early idiopathic Parkinson disease (PD) patients (MOTION study) (abstract). [Internet] AAN annual meeting, March 2013. [Cited 2014 Jan 8] Available from: http://www.abstracts2view.com/aan/view.php?nu=AAN13L_P01.061&terms

  48. Schapira A, Fox S, Hauser R, Jankovic J, Jost W, Kulisevsky J, et al. Safinamide add on to L-Dopa: a randomized, placebo-controlled, 24-week global trial in patients with Parkinson’s disease (PD) and motor fluctuations (SETTLE) (abstract). [Internet] AAN annual meeting, March 2013. [Cited 2014 Jan 8] Available from: http://www.abstracts2view.com/aan/view.php?nu=AAN13L_P01.062&terms

  49. Dyhring T, Nielsen EØ, Sonesson C, Pettersson F, Karlsson J, Svensson P, et al. The dopaminergic stabilizers pridopidine (ACR16) and (−)-OSU6162 display dopamine D(2) receptor antagonism and fast receptor dissociation properties. Eur J Pharmacol. 2010;628(1–3):19–26.

    Article  PubMed  CAS  Google Scholar 

  50. de Yebenes JG, Landwehrmeyer B, Squitieri F, Reilmann R, Rosser A, Barker RA, et al. Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2011;10(12):1049–57.

    Article  PubMed  CAS  Google Scholar 

  51. Ordopidine (ACR325). [Internet] NeuroSearch. [Cited 2014 Jan 8] Available from: http://neurosearch.com/Default.aspx?ID=8268

  52. Bermejo PE, Anciones B. A review of the use of zonisamide in Parkinson’s disease. Ther Adv Neurol Disord. 2009;2(5):313–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Murata M, Hasegawa K, Fukasaka J, Kochi K, Kanazawa I; The Japan Zonisamide on PD Study Group. Zonisamide improves wearing-off in Parkinson’s disease: a nation-wide randomized, double-blind study (abstract), 2013. MDS Conference, Sydney.

    Google Scholar 

  54. Pahwa R, Tanner CM, Hauser RA, Sethi KD, Isaacson SH, Truong DD, et al. Randomized trial of extended release amantadine in Parkinson’s disease patients with levodopa-induced dyskinesia (EASED study) (abstract), 2013. MDS Conference, Sydney.

    Google Scholar 

  55. Press release. Adamas Pharmaceuticals presents positive phase 2/3 results for ADS‑5102 for the treatment of levodopa-induced dyskinesia (LID) in Parkinson’s disease. [Internet] Adamas Pharmaceuticals, Inc; 2003. [Cited 2014 Jan 8] Available from: www.adamaspharma.com/PR20130618.aspx.

  56. Thomas A, Iacono D, Luciano AL, Armellino K, Di Iorio A, Onofrj M. Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75(1):141–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Ory-Magne F, Corvol J-C, Azulay J-P, Bonnet A-M, Brefel-Courbon C, Damier P, et al. Withdrawing amantadine in dyskinetic patients with Parkinson disease: the AMANDYSK trial. Neurology. 2014;82(4):300–7. Epub 2013 Dec 26.

    Article  PubMed  CAS  Google Scholar 

  58. Verhagen Metman L, Del Dotto P, Natté R, van den Munckhof P, Chase TN. Dextromethorphan improves levodopa-induced dyskinesias in Parkinson’s disease. Neurology. 1998;51(1):203–6.

    Article  PubMed  CAS  Google Scholar 

  59. Verhagen Metman L, Blanchet PJ, van den Munckhof P, Del Dotto P, Natté R, Chase TN. A trial of dextromethorphan in parkinsonian patients with motor response complications. Mov Disord. 1998;13(3):414–7.

    Article  PubMed  CAS  Google Scholar 

  60. Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P, Bar G, et al. D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry. 2005;57(6):577–85.

    Article  PubMed  CAS  Google Scholar 

  61. Gelfin E, Kaufman Y, Korn-Lubetzki I, Bloch B, Kremer I, Javitt DC, et al. D-serine adjuvant treatment alleviates behavioural and motor symptoms in Parkinson’s disease. Int J Neuropsychopharmacol. 2012;15(4):543–9.

    PubMed  CAS  Google Scholar 

  62. Eggert K, Squillacote D, Barone P, Dodel R, Katzenschlager R, Emre M, et al. Safety and efficacy of perampanel in advanced Parkinson’s disease: a randomized, placebo-controlled study. Mov Disord. 2010;25(7):896–905.

    Article  PubMed  Google Scholar 

  63. Lees A, Fahn S, Eggert KM, Jankovic J, Lang A, Micheli F, et al. Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Mov Disord. 2012;27(2):284–8.

    Article  PubMed  CAS  Google Scholar 

  64. Berg D, Godau J, Trenkwalder C, Eggert K, Csoti I, Storch A, et al. AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord. 2011;26(7):1243–50.

    Article  PubMed  Google Scholar 

  65. Stocchi F, Rascol O, Destee A, Hattori N, Hauser RA, Lang AE, et al. AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Mov Disord. 2013;28(13):1838–46.

    Article  PubMed  CAS  Google Scholar 

  66. Tison F, Durif F, Corvol JC, Eggert K, Trenkwalder C, Lew M, et al. Safety, tolerability and anti-dyskinetic efficacy of dipraglurant, a novel mGluR5 Negative Allosteric Modulator (NAM) in Parkinson’s disease (PD) patients with Levodopa-Induced Dyskinesia (LID) (abstract). [Internet] AAN annual meeting, March 2013. [Cited 2014 Jan 8] Available from: http://www.abstracts2view.com/aan/view.php?nu=AAN13L_S23.004&terms.

  67. Goetz CG, Damier P, Hicking C, Laska E, Müller T, Olanow CW, et al. Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebo-controlled trial. Mov Disord. 2007;22(2):179–86.

    Article  PubMed  Google Scholar 

  68. Goetz CG, Laska E, Hicking C, Damier P, Müller T, Nutt J, et al. Placebo influences on dyskinesia in Parkinson’s disease. Mov Disord. 2008;23(5):700–7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rascol O, Damier P, Goetz CG, Hicking C, Hock K, Muller T, et al. A large phase III study to evaluate the safety and efficacy of sarizotan in the treatment of l-dopa-induced-dyskinesia associated with PD: the Paddy-1 study. Mov Disord. 2006;21 Suppl 15:S492–3.

    Google Scholar 

  70. Müller T, Olanow CW, Nutt J, Hicking C, Laska E, Russ H. The Paddy-2 study: the evaluation of sarizotan for treatment-associated for dyskinesia in PD patients. Mov Disord. 2006;21 Suppl 15:S591.

    Google Scholar 

  71. Team Asubio Update. Team Asubio and Parkinson’s disease. [Internet] Asubio Pharmaceuticals, Inc. [Cited 2014 Jan 8]. Available from: http://www.asubio.com/team/TeamAsubio_Update.html.

  72. Mazzucchi S, Frosini D, Unti E, Del Prete E, Del Gamba C, Bonuccelli U, et al. Can serotoninergic antidepressants prevent or delay the development of L-dopa induced dyskinesias in PD patients? (abstract), 2013. MDS Conference, Sydney.

    Google Scholar 

  73. Durif F, Vidailhet M, Bonnet AM, Blin J, Agid Y. Levodopa-induced duskinesias are improved by fluoxetine. Neurology. 1995;45(10):1855–8.

    Article  PubMed  CAS  Google Scholar 

  74. Lewitt PA, Hauser RA, Lu M, Nicholas AP, Weiner W, Coppard N, et al. Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology. 2012;79(2):163–9.

    Article  PubMed  CAS  Google Scholar 

  75. Overview: Fipamezole for treatment of levodopa (L-dopa) induced Dyskinesia in Parkinson’s Disease; Expected USD 700m+ peak sales first-in-class opportunity for US and EU ready to enter Phase III. [Internet] Santhera Pharmaceuticals. [Cited 2014 Jan 8] Available from: http://www.santhera.com/index.php?mid=4&vid=&lang=en.

  76. Hauser RA, Cantillon M, Pourcher E, Micheli F, Mok V, Onofrj M, et al. Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol. 2011;10(3):221–9.

    Article  PubMed  CAS  Google Scholar 

  77. Corporate news. Merck provides update on phase III clinical program for preladenant, the company’s investigational Parkinson’s disease medicine. [Internet] Merck & Co., Inc; 2013. [Cited 2014 Jan 8] Available from: http://www.mercknewsroom.com/press-release/research-and-development-news/merck-provides-update-phase-iii-clinical-program-prelade.

  78. LeWitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, et al. Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol. 2008;63(3):295–302.

    Article  PubMed  CAS  Google Scholar 

  79. Hauser RA, Shulman LM, Trugman JM, Roberts JW, Mori A, Ballerini R, et al. Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov Disord. 2008;23(15):2177–85.

    Article  PubMed  Google Scholar 

  80. Stacy M, Silver D, Mendis T, Sutton J, Mori A, Chaikin P, et al. A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology. 2008;70(23):2233–40.

    Article  PubMed  CAS  Google Scholar 

  81. Mizuno Y, Kondo T, Japanese Istradefylline Study Group. Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson’s disease. Mov Disord. 2013;28(8):1138–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hauser RA, Olanow CW, Kieburtz K, Neale A, Resburg C, Maya U, et al. A phase 2, placebo-controlled, randomized, double-blind trial of tozadenant (SYN-115) in patients with Parkinson’s disease with wearing-off fluctuations on levodopa (abstract), 2013. MDS Conference, Sydney.

    Google Scholar 

  83. Tozadenant (SYN115): a highly differentiated product for Parkinson’s disease. [Internet] Biotie Therapies; 2012. [Cited 2014 Jan 8] Available from: http://www.biotie.com/en/product_and_development/development_pipeline/syn115.

  84. clinicaltrials.gov. [Internet] Study NCT01474421. [Cited 2014 Jan 8] Available from: http://clinicaltrials.gov/ct2/show/NCT01474421?term=NCT01474421&rank=1.

  85. Huang LZ, Campos C, Ly J, Ivy Carroll F, Quik M. Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology. 2011;60(6):861–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Quik M, Mallela A, Ly J, Zhang D. Nicotine reduces established levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Mov Disord. 2013;28(10):1398–406.

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Anfang MK, Pope Jr HG. Treatment of neuroleptic-induced akathisia with nicotine patches. Psychopharmacology (Berl). 1997;134(2):153–6.

    Article  CAS  Google Scholar 

  88. News release. Neuraltus Pharmaceuticals reports clinical results from phase 1/2 NP002 study in the treatment of dyskinesias resulting from levodopa therapy for Parkinson’s disease. [Internet] Neuraltus Pharmaceuticals, Inc; 2010. [Cited 2014 Jan 8] Available from: http://www.neuraltus.com/pages/news_rel12_03_10.html

  89. Pacchetti C, Albani G, Martignoni E, Godi L, Alfonsi E, Nappi G. “Off” painful dystonia in Parkinson’s disease treated with botulinum toxin. Mov Disord. 1995;10(3):333–6.

    Article  PubMed  CAS  Google Scholar 

  90. Espay AJ, Vaughan JE, Shukla R, Gartner M, Sahay A, Revilla FJ, et al. Botulinum toxin type A for Levodopa-induced cervical dyskinesias in Parkinson’s disease: unfavorable risk-benefit ratio. Mov Disord. 2011;26(5):913–4.

    Article  PubMed  Google Scholar 

  91. Susman E. News from the AAN annual meeting: Safinamide Misses in Attempt to Prevent Dyskinesia. Neurol Today. 2011;11(9):19.

    Article  Google Scholar 

  92. Wong KK, Alty JE, Goy AG, Raghav S, Reutens DC, Kempster PA. A randomized, double-blind, placebo-controlled trial of levetiracetam for dyskinesia in Parkinson’s disease. Mov Disord. 2011;26(8):1552–5.

    Article  PubMed  Google Scholar 

  93. Stathis P, Konitsiotis S, Tagaris G, Peterson D, VALID-PD Study Group. Levetiracetam for the management of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2011;26(2):264–70.

    Article  PubMed  CAS  Google Scholar 

  94. Wolz M, Löhle M, Strecker K, Schwanebeck U, Schneider C, Reichmann H, et al. Levetiracetam for levodopa-induced dyskinesia in Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. J Neural Transm. 2010;117(11):1279–86.

    Article  PubMed  CAS  Google Scholar 

  95. Lyons KE, Pahwa R. Efficacy and tolerability of levetiracetam in Parkinson disease patients with levodopa-induced dyskinesia. Clin Neuropharmacol. 2006;29(3):148–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan H. Fox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Fox, S.H., Boileau-Boire, I. (2014). New Clinical Trials for Levodopa-Induced Dyskinesia. In: Fox, S., Brotchie, J. (eds) Levodopa-Induced Dyskinesia in Parkinson's Disease. Springer, London. https://doi.org/10.1007/978-1-4471-6503-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6503-3_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6502-6

  • Online ISBN: 978-1-4471-6503-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics