Advertisement

Human Health Effects of Bisphenol A

Chapter
Part of the Molecular and Integrative Toxicology book series (MOLECUL)

Abstract

Bisphenol A (BPA) is a high production endocrine disrupting chemical found in numerous consumer products. BPA has been used commercially since 1957 to make hard polycarbonate plastics and epoxy resins used in food-can linings, cash-register receipts, and dental resins. The ubiquity of BPA in our environment results in exposure to this chemical daily in human populations. But controversy remains regarding how much BPA humans actually ingest or otherwise encounter. Many laboratory animal and human studies have linked exposures to BPA, a hormone mimicking chemical, to adverse health effects, including altered behavior and obesity in children, reproductive abnormalities, cardiovascular changes, and various cancers. However, there have been considerable inconsistencies in the outcomes from these studies with respect to the nature of the adverse health effects observed, and questions as to whether the BPA dose at which they occur are within the range of non-occupational human exposures. This chapter reviews the latest research on BPA, focusing on human exposure, discussions of biomonitoring studies and toxicokinetic models, human health effects, and research needs. We also include illustrative examples of animal models that address whether BPA-exposure is associated with changes in certain health endpoints.

Keywords

Bisphenol A Endocrine disruption Developmental toxicity Pharmacokinetics Biomonitoring 

References

  1. Acevedo N, Davis B, Schaeberle CM et al (2013) Perinatally administered bisphenol A acts as a mammary gland carcinogen in rats. Environ Health Perspect 121(9):1040–1046Google Scholar
  2. Andersen HR, Andersson A-M, Arnold SF et al (1999) Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect 107(Suppl 1):89–108Google Scholar
  3. Apter D (1996) Hormonal events during female puberty in relation to breast cancer risk. Eur J Cancer Prev 5(6):476–482Google Scholar
  4. Arora M, Austin C (2013) Teeth as a biomarker of past chemical exposure. Curr Opin Pediatr 25(2):261–267CrossRefPubMedGoogle Scholar
  5. Barouki R, Aggerbeck M, Aggerbeck L et al (2012) The aryl hydrocarbon receptor system. Drug Metab Drug Interact 27(1):3–8Google Scholar
  6. Bellinger DC (2004) What is an adverse effect? A possible resolution of clinical and epidemiological perspectives on neurobehavioral toxicity. Environ Res 95(3):394–405CrossRefPubMedGoogle Scholar
  7. Birnbaum LS, Bucher JR, Collman GW et al (2012) Consortium-based science: the NIEHS’s multipronged, collaborative approach to assessing the health effects of bisphenol A. Environ Health Perspect 120(12):1640–1644Google Scholar
  8. Bloom MS, Kim D, Vom Saal FS et al (2011a) Bisphenol A exposure reduces the estradiol response to gonadotropin stimulation during in vitro fertilization. Fertil Steril 96(3):672–677Google Scholar
  9. Bloom MS, Vom Saal FS, Kim D et al (2011b) Serum unconjugated bisphenol A concentrations in men may influence embryo quality indicators during in vitro fertilization. Environ Toxicol Pharmacol 32(2):319–323Google Scholar
  10. Boyle CA, Boulet S, Schieve LA et al (2011) Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics 127(6):1034–1042Google Scholar
  11. Braun JM, Yolton K, Dietrich KN et al (2009) Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect 117(12):1945–1952Google Scholar
  12. Braun JM, Daniels JL, Poole C et al (2010a) A prospective cohort study of biomarkers of prenatal tobacco smoke exposure: the correlation between serum and meconium and their association with infant birth weight. Environ Health 9(53):1–11Google Scholar
  13. Braun JM, Kalkbrenner AE, Calafat AM et al (2010b) Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environ Health Perspect 119(9):131–137Google Scholar
  14. Braun JM, Kalkbrenner AE, Calafat AM et al (2011) Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 128(5):873–882Google Scholar
  15. Calafat AM (2010) BPA biomonitoring and biomarker studies. In: FAO/WHO expert meeting on bisphenol A (BPA), Ottawa, Canada, 1–5 Nov 2010Google Scholar
  16. Calafat AM, Ye X, Wong LY et al (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116(1):39–44Google Scholar
  17. Cantonwine D, Meeker JD, Hu H et al (2010) Bisphenol a exposure in Mexico City and risk of prematurity: a pilot nested case control study. Environ Health 9(62):2–7Google Scholar
  18. Carwile JL, Michels KB (2011) Urinary bisphenol A and obesity: NHANES 2003–2006. Environ Res 111(6):825–830PubMedCentralCrossRefPubMedGoogle Scholar
  19. Carwile JL, Ye X, Zhou X et al (2011) Canned soup consumption and urinary bisphenol A: a randomized crossover trial. JAMA 306(20):2218–2220Google Scholar
  20. Castorina R, Bradman A, Fenster L et al (2010) Comparison of current-use pesticide and other toxicant urinary metabolite levels among pregnant women in the CHAMACOS cohort and NHANES. Environ Health Perspect 118(6):856–863Google Scholar
  21. Chamorro-Garcia R, Kirchner S, Li X et al (2012) Bisphenol A diglycidyl ether induces adipogenic differentiation of multipotent stromal stem cells through a peroxisome proliferator-activated receptor gamma-independent mechanism. Environ Health Perspect 120(7):984–989Google Scholar
  22. Chapin RE, Adams J, Boekelheide K et al (2008) NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defects Res B Dev Reprod Toxicol 83(3):157–395Google Scholar
  23. Cobellis L, Colacurci N, Trabucco E et al (2009) Measurement of bisphenol A and bisphenol B levels in human blood sera from healthy and endometriotic women. Biomed Chromatogr 23(11):1186–1190Google Scholar
  24. Crain DA, Eriksen M, Iguchi T et al (2007) An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol 24(2):225–239Google Scholar
  25. Dekant W, Volkel W (2008) Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicol Appl Pharmacol 228(1):114–134CrossRefPubMedGoogle Scholar
  26. Doerge DR, Twaddle NC, Woodling KA et al (2010) Pharmacokinetics of bisphenol A in neonatal and adult Rhesus monkeys. Toxicol Appl Pharmacol 248(1):1–11Google Scholar
  27. Ehrlich S, Williams PL, Missmer SA et al (2012a) Urinary bisphenol A concentrations and implantation failure among women undergoing in vitro fertilization. Environ Health Perspect 120(7):978–983Google Scholar
  28. Ehrlich S, Williams PL, Missmer SA et al (2012b) Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum Reprod 27(12):3583–3592Google Scholar
  29. European Food Safety Authority (EFSA) (2010) Scientific opinion on bisphenol A: evaluation of a study investigating its neurodevelopmental toxicity, review of recent scientific literature on its toxicity and advice on the Danish risk assessment of bisphenol A. EFSA J 8(9):1829. http://www.efsa.europa.eu/en/efsajournal/pub/1829.htm. Accessed 4 Feb 2014
  30. European Food Safety Authority (EFSA) (2013) Press release on human BPA exposure estimates. http://www.fda.gov/newsevents/publichealthfocus/ucm064437.htm. Accessed 14 Aug 2013
  31. Fisher JW, Twaddle NC, Vanlandingham M et al (2011) Pharmacokinetic modeling: prediction and evaluation of route dependent dosimetry of bisphenol A in monkeys with extrapolation to humans. Toxicol Appl Pharmacol 257(1):122–136Google Scholar
  32. Food and Drug Administration (FDA) (2010) Update on bisphenol A for use in food contact applications. http://www.fda.gov/NewsEvents/PublicHealthFocus/ucm197739.htm. Accessed 13 Mar 2012
  33. Food and Drug Administration (FDA) (2012) Bisphenol A (BPA): use in food contact application. http://www.fda.gov/NewsEvents/PublicHealthFocus/ucm064437.htm. Accessed 21 Sept 2012
  34. Food and Drug Administration (FDA) (2013) Indirect food additives: adhesives and components of coatings. https://www.federalregister.gov/articles/2013/07/12/2013-16684/indirect-food-additives-adhesives-and-components-of-coatings. Accessed 1 Aug 2013 2013
  35. Fujimoto VY, Kim D, vom Saal FS et al (2011) Serum unconjugated bisphenol A concentrations in women may adversely influence oocyte quality during in vitro fertilization. Fertil Steril 95(5):1816–1819Google Scholar
  36. Galloway T, Cipelli R, Guralnik J et al (2010) Daily bisphenol A excretion and associations with sex hormone concentrations: results from the InCHIANTI adult population study. Environ Health Perspect 118(11):1603–1608Google Scholar
  37. Geens T, Aerts D, Berthot C et al (2012) A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol 50(10):3725–3740Google Scholar
  38. Gerona RR, Woodruff TJ, Dickenson CA et al (2013) BPA, BPA glucuronide, and BPA sulfate in mid-gestation umbilical cord serum in a northern California cohort. Environ Sci Technol 13:1–34Google Scholar
  39. Gould JC, Leonard LS, Maness SC et al (1998) Bisphenol A interacts with the estrogen receptor α in a distinct manner from estradiol. Mol Cell Endocrinol 142:203–214Google Scholar
  40. Gupta C (2000) Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proc Soc Exp Biol Med 224(2):61–68CrossRefPubMedGoogle Scholar
  41. Hanaoka T, Kawamura N, Hara K et al (2002) Urinary bisphenol A and plasma hormone concentrations in male workers exposed to bisphenol A diglycidyl ether and mixed organic solvents. Occup Environ Med 59(9):625–628Google Scholar
  42. Ho SM, Tang WY, Belmonte de Frausto J et al (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66(11):5624–5632Google Scholar
  43. Hong SB, Hong YC, Kim JW et al (2013) Bisphenol A in relation to behavior and learning of school-age children. J Child Psychol Psychiatry 8:890–899Google Scholar
  44. Kandaraki E, Chatzigeorgiou A, Livadas S et al (2011) Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metab 96(3):480–484Google Scholar
  45. Keri RA, Ho SM, Hunt PA et al (2007) An evaluation of evidence for the carcinogenic activity of bisphenol A. Reprod Toxicol 24(2):240–252Google Scholar
  46. Kingman A, Hyman J, Masten SA et al (2012) Bisphenol A and other compounds in human saliva and urine associated with the placement of composite restorations. J Am Dent Assoc 143(12):1292–1302Google Scholar
  47. Koch HM, Kolossa-Gehring M, Schroter-Kermani C et al (2012) Bisphenol A in 24 h urine and plasma samples of the German environmental specimen bank from 1995 to 2009: a retrospective exposure evaluation. J Expo Sci Environ Epidemiol 22(6):610–616Google Scholar
  48. Kuiper GG, Lemmen JG, Carlsson B et al (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263Google Scholar
  49. Kwintkiewicz J, Nishi Y, Yanase T et al (2010) Peroxisome proliferator-activated receptor-gamma mediates bisphenol A inhibition of FSH-stimulated IGF-1, aromatase, and estradiol in human granulosa cells. Environ Health Perspect 118(3):400–406Google Scholar
  50. Lakind JS, Naiman DQ (2011) Daily intake of bisphenol A and potential sources of exposure: 2005–2006 National Health and Nutrition Examination Survey. J Expo Sci Environ Epidemiol 21(3):272–279PubMedCentralCrossRefPubMedGoogle Scholar
  51. Lang IA, Galloway TS, Scarlett A et al (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300(11):1303–1310Google Scholar
  52. Li DK, Zhou Z, Miao M et al (2010) Relationship between urine bisphenol-A (BPA) level and declining male sexual function. J Androl 1(13):500–506Google Scholar
  53. Li Y, Burns KA, Arao Y et al (2012) Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor in vitro. Environ Health Perspect 120(7):1029–1035Google Scholar
  54. Li DK, Miao M, Zhou Z et al (2013) Urine bisphenol-A level in relation to obesity and overweight in school-age children. PLoS ONE 8(6):1–6Google Scholar
  55. Liao C, Kannan K (2011) Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure. Environ Sci Technol 45(21):9372–9379CrossRefPubMedGoogle Scholar
  56. Markey CM, Luque EH, Munoz De Toro M et al (2001) In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 65(4):1215–1223Google Scholar
  57. Maserejian NN, Trachtenberg FL, Hauser R et al (2012a) Dental composite restorations and neuropsychological development in children: treatment level analysis from a randomized clinical trial. Neurotoxicology 33(5):1291–1297Google Scholar
  58. Maserejian NN, Trachtenberg FL, Hauser R et al (2012b) Dental composite restorations and psychosocial function in children. Pediatrics 130(2):328–338Google Scholar
  59. Masuno H, Kidani T, Sekiya K et al (2002) Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J Lipid Res 43(5):676–684Google Scholar
  60. Masuno H, Iwanami J, Kidani T et al (2005) Bisphenol A accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci 84(2):319–327Google Scholar
  61. McLachlan JA (2001) Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev 22(3):319–341CrossRefPubMedGoogle Scholar
  62. Meeker JD, Calafat AM, Hauser R (2010a) Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ Sci Technol 44(4):1458–1463PubMedCentralCrossRefPubMedGoogle Scholar
  63. Meeker JD, Ehrlich S, Toth TL et al (2010b) Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reprod Toxicol 4:532–539Google Scholar
  64. Melzer D, Rice NE, Lewis C et al (2010) Association of urinary bisphenol A concentration with heart disease: evidence from NHANES 2003/06. PLoS ONE 5(1):1–9Google Scholar
  65. Mendiola J, Jorgensen N, Andersson AM et al (2010) Are environmental levels of bisphenol A associated with reproductive function in fertile men? Environ Health Perspect 118(9):1286–1291Google Scholar
  66. Mendola P, Selevan SG, Gutter S et al (2002) Environmental factors associated with a spectrum of neurodevelopmental deficits. Ment Retard Dev Disabil Res Rev 8(3):188–197Google Scholar
  67. Mok-Lin E, Ehrlich S, Williams PL et al (2010) Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int J Androl 33(2):385–393Google Scholar
  68. Moriyama K, Tagami T, Akamizu T et al (2002) Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 87:5185–5190Google Scholar
  69. Nachman RM, Fox SD, Golden WC et al (2013) Urinary free bisphenol A and bisphenol A-glucuronide concentrations in newborns. J Pediatr 162(4):870–872Google Scholar
  70. Nagel SC, vom Saal FS, Thayer KA et al (1997) Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect 105(1):70–76Google Scholar
  71. National Toxicology Program (NTP) (2008) NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. National Toxicology Program, U.S. Department of Health and Human Services. http://oehha.ca.gov/prop65/CRNR_notices/state_listing/data_callin/pdf/NTP_CERHR_0908_bisphenolA.pdf. Accessed 3 July 2013
  72. Newbold RR, Jefferson WN, Padilla-Banks E (2007) Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract. Reprod Toxicol 24(2):253–258PubMedCentralCrossRefPubMedGoogle Scholar
  73. Padmanabhan V, Siefert K, Ransom S et al (2008) Maternal bisphenol-A levels at delivery: a looming problem? J Perinatol 28(4):258–263Google Scholar
  74. Palanza P, Morellini F, Parmigiani S et al (1999) Prenatal exposure to endocrine disrupting chemicals: effects on behavioral development. Neurosci Biobehav Rev 23(7):1011–1027Google Scholar
  75. Patisaul HB, Adewale HB (2009) Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Front Behav Neurosci 3:1–10CrossRefGoogle Scholar
  76. Patterson TA, Twaddle NC, Roegge CS et al (2013) Concurrent determination of bisphenol A pharmacokinetics in maternal and fetal Rhesus monkeys. Toxicol Appl Pharmacol 267(1):41–48Google Scholar
  77. Perera F, Vishnevetsky J, Herbstman JB et al (2012) Prenatal bisphenol A exposure and child behavior in an inner-city cohort. Environ Health Perspect 120(8):1190–1194Google Scholar
  78. Pocar P, Fischer B, Klonisch T et al (2005) Molecular interactions of the aryl hydrocarbon receptor and its biological and toxicological relevance for reproduction. Reproduction 129(4):379–389Google Scholar
  79. Prins GS, Ye SH, Birch L et al (2010) Serum bisphenol A pharmacokinetics and prostate neoplastic responses following oral and subcutaneous exposures in neonatal Sprague-Dawley rats. Reprod Toxicol 1:1–20Google Scholar
  80. Richter C, Birnbaum LS, Farabollini F et al (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24(2):199–224Google Scholar
  81. Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127(1–2):27–34CrossRefPubMedGoogle Scholar
  82. Sakurai K, Kawazuma M, Adachi T et al (2004) Bisphenol A affects glucose transport in mouse 3T3-F442A adipocytes. Br J Pharmacol 141(2):209–214Google Scholar
  83. Schug TT, Vogel SA, Vandenberg LN et al (2012) Bisphenol A. In: Schecter A (ed) Dioxins and health: including other persistent organic pollutants and endocrine disruptors, 3rd edn. Wiley, Hoboken, pp 381–414Google Scholar
  84. Schug TT, Heindel JJ, Camacho L et al (2013) A new approach to synergize academic and guideline-compliant research: the CLARITY-BPA research program. Reprod Toxicol 5(13):00121–00124Google Scholar
  85. Sharpe RM, Drake AJ (2013) Obesogens and obesity—an alternative view? Obesity 20(10):20373–20378Google Scholar
  86. Shelby MD (2008) NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. NTP CERHR MON (22):v, vii-ix, 1–64Google Scholar
  87. Soto AM, Brisken C, Schaeberle C et al (2013) Does cancer start in the womb? Altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. J Mammary Gland Biol Neoplasia 24:199–208Google Scholar
  88. Stahlhut RW, Welshons WV, Swan SH (2009) Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Perspect 117(5):784–789PubMedCentralCrossRefPubMedGoogle Scholar
  89. Stump DG, Beck MJ, Radovsky A et al (2010) Developmental neurotoxicity study of dietary bisphenol A in Sprague-Dawley rats. Toxicol Sci 115(1):167–182Google Scholar
  90. Taylor JA, Vom Saal FS, Welshons WV et al (2011) Similarity of bisphenol A pharmacokinetics in Rhesus monkeys and mice: relevance for human exposure. Environ Health Perspect 119(4):422–430Google Scholar
  91. Teeguarden JG, Calafat AM, Ye X et al (2011) Twenty-four hour human urine and serum profiles of bisphenol A during high-dietary exposure. Toxicol Sci 123(1):48–57Google Scholar
  92. Thayer KA, Heindel JJ, Bucher JR et al (2012) Role of environmental chemicals in diabetes and obesity: A National Toxicology Program workshop review. Environ Health Perspect 120(6):779–789Google Scholar
  93. Thomas P, Dong J (2006) Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102:175–179CrossRefPubMedGoogle Scholar
  94. Timms BG, Howdeshell KL, Barton L et al (2005) Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proc Natl Acad Sci USA 102(19):7014–7019Google Scholar
  95. Trasande L, Attina TM, Blustein J (2012) Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. JAMA 308(11):1113–1121CrossRefPubMedGoogle Scholar
  96. Vandenberg LN, Hauser R, Marcus M et al (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177Google Scholar
  97. Vandenberg LN, Maffini MV, Sonnenschein C et al (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95Google Scholar
  98. Vandenberg LN, Chahoud I, Heindel JJ et al (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118(8):1055–1070Google Scholar
  99. Vandenberg LN, Colborn T, Hayes TB et al (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33:1–78Google Scholar
  100. Vandenberg LN, Hunt PA, Myers JP et al (2013) Human exposures to bisphenol A: mismatches between data and assumptions. Rev Environ Health 28(1):37–58Google Scholar
  101. Vanderloo MJ, Bruckers LM, Janssesn JP (2007) Effects of lifestyle on the onset of puberty as determinant for breast cancer. Eur J Cancer Prev 16(1):17–25CrossRefGoogle Scholar
  102. Vinas R, Watson CS (2013) Bisphenol S disrupts estradiol-induced nongenomic signaling in a rat pituitary cell line: effects on cell functions. Environ Health Perspect 121(3):352–358PubMedCentralCrossRefPubMedGoogle Scholar
  103. Volkel W, Colnot T, Csanady GA et al (2002) Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol 15(10):1281–1287Google Scholar
  104. Volkel W, Bittner N, Dekant W (2005) Quantitation of bisphenol A and bisphenol A glucuronide in biological samples by high performance liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 33:1748–1757CrossRefPubMedGoogle Scholar
  105. vom Saal FS, Timms BG, Montano MM et al (1997) Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Nat Acad Sci 94(5):2056–2061Google Scholar
  106. vom Saal FS, Akingbemi BT, Belcher SM et al (2007) Chapel Hill bisphenol A expert panel consensus statement: Integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol 24:131–138Google Scholar
  107. von Goetz N, Wormuth M, Scheringer M et al (2010) Bisphenol A: how the most relevant exposure sources contribute to total consumer exposure. Risk Anal 30(3):473–487Google Scholar
  108. Wang J, Sun B, Hou M et al (2012) The environmental obesogen bisphenol A promotes adipogenesis by increasing the amount of 11beta-hydroxysteroid dehydrogenase type 1 in the adipose tissue of children. Int J Obes 23(10):173–179Google Scholar
  109. Watson CS, Bulayeva NN, Wozniak AL et al (2007) Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids 72:124–134Google Scholar
  110. Wetherill YB, Akingbemi BT, Kanno J et al (2007) In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 24(2):178–198Google Scholar
  111. Wolff MS, Britton JA, Boguski L et al (2008) Environmental exposures and puberty in inner-city girls. Environ Res 107(3):393–400Google Scholar
  112. Wolff MS, Teitelbaum SL, Pinney SM et al (2010) Investigation of relationships between urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect 118(7):1039–1046Google Scholar
  113. Wolstenholme JT, Rissman EF, Connelly JJ (2011) The role of bisphenol A in shaping the brain, epigenome and behavior. Horm Behav 59(3):296–305PubMedCentralCrossRefPubMedGoogle Scholar
  114. World Health Organization (WHO) (2010) Toxicological and health aspects of bisphenol A. In: Joint FAO/WHO Expert meeting 2–5 November 2010 and Stakeholder meeting on Bisphenol A 1 November 2010, Ottawa, Canada, 2010. World Health Organization, Geneva, Switzerland Google Scholar
  115. Wright CL, Schwarz JS, Dean SL et al (2010) Cellular mechanisms of estradiol-mediated sexual differentiation of the brain. Trends Endocrinol Metab 21(9):553–561Google Scholar
  116. Yang M, Ryu JH, Jeon R et al (2009) Effects of bisphenol A on breast cancer and its risk factors. Arch Toxicol 83(3):281–285Google Scholar
  117. Ye X, Zhou X, Needham LL et al (2011) In vitro oxidation of bisphenol A: Is bisphenol A catechol a suitable biomarker for human exposure to bisphenol A? Anal Bioanal Chem 399(3):1071–1079Google Scholar
  118. Ye X, Zhou X, Wong LY et al (2012) Concentrations of bisphenol A and seven other phenols in pooled sera from 3–11 year old children: 2001–2002 National Health and Nutrition Examination Survey. Environ Sci Technol 46(22):12664–12671Google Scholar
  119. Ye X, Zhou X, Hennings R et al (2013) Potential external contamination with bisphenol A and other ubiquitous organic environmental chemicals during biomonitoring analysis: an elusive laboratory challenge. Environ Health Perspect 121(3):283–286Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Division of Extramural Research and TrainingNational Institute of Environmental Health SciencesResearch Triangle ParkUSA
  2. 2.National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkUSA
  3. 3.National Cancer Institute, National Institutes of HealthResearch Triangle ParkUSA

Personalised recommendations