Visual Exploration of Simulated and Measured Blood Flow

  • A. Vilanova
  • Bernhard Preim
  • Roy van Pelt
  • Rocco Gasteiger
  • Mathias Neugebauer
  • Thomas Wischgoll
Part of the Mathematics and Visualization book series (MATHVISUAL)


Morphology of cardiovascular tissue is influenced by the unsteady behavior of the blood flow and vice versa. Therefore, the pathogenesis of several cardiovascular diseases is directly affected by the blood-flow dynamics. Understanding flow behavior is of vital importance to understand the cardiovascular system and potentially harbors a considerable value for both diagnosis and risk assessment. The analysis of hemodynamic characteristics involves qualitative and quantitative inspection of the blood-flow field. Visualization plays an important role in the qualitative exploration, as well as the definition of relevant quantitative measures and its validation. There are two main approaches to obtain information about the blood flow: simulation by computational fluid dynamics, and in-vivo measurements. Although research on blood flow simulation has been performed for decades, many open problems remain concerning accuracy and patient-specific solutions. Possibilities for real measurement of blood flow have recently increased considerably by new developments in magnetic resonance imaging which enable the acquisition of 3D quantitative measurements of blood-flow velocity fields. This chapter presents the visualization challenges for both simulation and real measurements of unsteady blood-flow fields.


Wall Shear Stress Computational Fluid Dynamics Simulation Integral Curf Blood Flow Simulation Blood Flow Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    American Heart Association: Heart and stroke statistics (2010).
  2. 2.
    Arheden, H.k., Saeed, M., Törnqvist, E., Lund, G., Wendland, M.F., Higgins, C.B., Ståhlberg, F.: Accuracy of segmented MR velocity mapping to measure small vessel pulsatile flow in a phantom simulating cardiac motion. J. Magn. Reson. Imaging 13(5), 722–728 (2001)Google Scholar
  3. 3.
    Bernstein, M.A., Ikezaki, Y.: Comparison of phase-difference and complex-difference processing in phase-contrast MR angiography. Magn. Reson. Imaging 1(2), 725–729 (1991).
  4. 4.
    Bernstein, M.A., Zhou, X.J., Polzin, J.A., King, K.F., Ganin, A., Pelc, N.J., Glover, G.H.: Concomitant gradient terms in phase contrast MR: analysis and correction. Magn. Reson. Med. 39(2), 300–308 (1998)CrossRefGoogle Scholar
  5. 5.
    Cebral, J.R., Castro, M.A., Appanaboyina, S., Putmann, C.M., Millan, D., Frangi, A.F.: Efficient pipeline for image-based patient-specific analysis of cebral aneurysm hemodynamics:technique and sensitivity. IEEE Trans. Med. Imaging 24(4), 457–467 (2005)CrossRefGoogle Scholar
  6. 6.
    Cebral, J.R., Putman, C.M., Alley, M.T., Hope, T., Bammer, R., Calamante, F.: Hemodynamics in normal cerebral arteries: qualitative comparison of 4d phase-contrast magnetic resonance and image-based computational fluid dynamics. J. Eng. Math. 64(4), 367–378 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chung, A.C.S., Noble, J.A., Summers, P.: Vascular segmentation of phase-contrast magnetic resonance angiograms based on statistical mixture modeling and local phase coherence. IEEE Trans. Med. Imaging 23(12), 1490–1507 (2004)CrossRefGoogle Scholar
  8. 8.
    Elmqvist, N., Tudoreanu, M.E., Tsigas, P.: Evaluating motion constraints for 3d wayfinding in immersive and desktop virtual environments. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI ’08, pp. 1769–1778. ACM, New York, NY, USA (2008)Google Scholar
  9. 9.
    Everts, M.H., Bekker, H., Roerdink, J.B., Isenberg, T.: Depth-dependent halos: illustrative rendering of dense line data. IEEE Trans. Vis. Comput. Graph. 15, 1299–1306 (2009).
  10. 10.
    Garcke, H.: Preu\(\beta \)er, T., Rumpf, M., Telea, A., Weikard, U., van Wijk, J.: A continuous clustering method for vector fields. In: Proceedings of the conference on Visualization ’00. VIS’00, pp. 351–358. IEEE Computer Society Press, Los Alamitos, CA, USA (2000)Google Scholar
  11. 11.
    Gasteiger, R., Neugebauer, M., Beuing, O., Preim, B.: The FLOWLENS: A Focus-and-Context Visualization Approach for Exploration of Blood Flow in Cerebral Aneurysms. IEEE Trans. Vis. Comput. Graph. 17, 2183–2192 (2011)CrossRefGoogle Scholar
  12. 12.
    Gasteiger, R., Neugebauer, M., Kubisch, C., Preim, B.: Adapted surface visualization of cerebral aneurysms with embedded blood flow information. In: Eurographics Workshop on Visual Computing for Biology and Medicine (EG VCBM), pp. 25–32 (2010)Google Scholar
  13. 13.
    Gatehouse, P., Keegan, J., Crowe, L., Masood, S., Mohiaddin, R., Kreitner, K.F., Firmin, D.: Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur. Radiol. 15, 2172–2184 (2005)CrossRefGoogle Scholar
  14. 14.
    Gatehouse, P.D., Rolf, M.P., Graves, M.J., Hofman, M.B., Totman, J.J., Werner, B., Quest, R.A., Liu, Y., Spiczak von, J., Dieringer, M., Firmin, D.N., Rossum van, A., Lombardi, M., Schwitter, J., Schulz-Menger, J., Kilner, P.J.: Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J. Cardiovasc. Magn. Reson. 12(5) (2010)Google Scholar
  15. 15.
    Greil, G., Geva, T., Maier, S.E., Powell, A.J.: Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements. Magn. Reson. Imaging 15(1), 47–54 (2002). doi: 10.1002/jmri.10029 CrossRefGoogle Scholar
  16. 16.
    Hanson, A.J., Wernert, E.A.: Constrained 3d navigation with 2d controllers. In: Proceedings of the 8th Conference on Visualization ’97, VIS ’97, pp. 175–182. IEEE Computer Society Press (1997)Google Scholar
  17. 17.
    Huo, Y., Kaimovitz, B., Lanir, Y., Wischgoll, T., Hoffman, J.I., Kassab, G.S.: Biophysical model of spatial heterogeneity of myocardial flow. Biophys. J. 96(10), 4035–4043 (2009)CrossRefGoogle Scholar
  18. 18.
    Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkl, P., Gröller, E.: CPR: curved planar reformation. pp. 37–44. IEEE Computer Society (2002)Google Scholar
  19. 19.
    Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36, 81–121 (2004)CrossRefGoogle Scholar
  20. 20.
    Krishnan, H., Garth, C., Guhring, J., Gulsun, M., Greiser, A., Joy, K.: Analysis of time-dependent flow-sensitive PC-MRI data. IEEE Trans. Vis. Comput. Graph. 99, 1 (2011). doi: 10.1109/TVCG.2011.80 Google Scholar
  21. 21.
    Kuhn, A., Lehmann, D.J., Gaststeiger, R., Neugebauer, M., Preim, B., Theisel, H.: A clustering-based visualization technique to emphasize meaningful regions of vector fields. In: Proceedings of Vision, Modeling, and Visualization (VMV 2011), pp. 191–198. Eurographics Assosciation (2011)Google Scholar
  22. 22.
    Langley, J., Zhao, Q.: Unwrapping magnetic resonance phase maps with chebyshev polynomials. J. Magn. Reson. Imaging 27(9), 1293–1301 (2009)CrossRefGoogle Scholar
  23. 23.
    Laramee, R.S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F.H., Weiskopf, D.: The state of the art in flow visualization: dense and texture-based techniques. Comput. Graph. Forum 23(2), 203–221 (2004)CrossRefGoogle Scholar
  24. 24.
    Li, H., Chen, W., Shen, I.F.: Segmentation of discrete vector fields. IEEE Trans. Vis. Comput. Graph. 12, 289–300 (2006).
  25. 25.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’87, pp. 163–169. ACM, New York, NY, USA (1987)Google Scholar
  26. 26.
    Lotz, J., Döker, R., Noeske, R., Schüttert, M., Felix, R., Galanski, M., Gutberlet, M., Meyer, G.P.: In vitro validation of phase-contrast flow measurements at 3 T in comparison to 1.5 T: precision, accuracy, and signal-to-noise ratios. J. Magn. Reson. Imaging 21(5), 604–610 (2005)CrossRefGoogle Scholar
  27. 27.
    Markl, M., Chan, F.P., Alley, M.T.: L. Wedding, K., Draney, M.T., Elkins, C.J., Parker, D.W., Taylor, C.A., Herfkens, R.J., Pelc, N.J.: Time resolved three dimensional phase contrast MRI. Magn. Reson. Imaging 506, 64 (2003)Google Scholar
  28. 28.
    Morbiducci, U., Ponzini, R., Rizzo, G., Cadioli, M., Esposito, A., De Cobelli, F., Del Maschio, A., Montevecchi, F., Redaelli, A.: In vivo: quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 37, 516–531 (2009)CrossRefGoogle Scholar
  29. 29.
    Neugebauer, M., Diehl, V., Skalej, M., Preim, B.: Geometric reconstruction of the ostium of cerebral aneurysms. In: Koch, R., Kolb, A., Rezk-Salama, C. (eds.) VMV 2010–Vision, Modeling, Visualization, pp. 307–314 (2010)Google Scholar
  30. 30.
    Neugebauer, M., Gasteiger, R., Beuing, O., Diehl, V., Skalej, M., Preim, B.: Map displays for the analysis of scalar data on cerebral aneurysm surfaces. Comput. Graph. Forum (EuroVis) 28(3), 895–902 (2009)CrossRefGoogle Scholar
  31. 31.
    Neugebauer, M., Gasteiger, R., Diehl, V., Beuing, O., Preim, B.: Automatic generation of context visualizations for cerebral aneurysms from MRA datasets. Int. J. Comput. Assist. Radiol. Surg. (CARS) 4(Supplement 1), 112–113 (2009)Google Scholar
  32. 32.
    Nixon, A.M., Gunel, M., Sumpio, B.E.: The critical role of hemodynamics in the development of cerebral vascular disease. Neurosurgery 112(6), 1240–1253 (2010)CrossRefGoogle Scholar
  33. 33.
    Oeltze, S., Preim, B.: Visualization of vasculature with convolution surfaces: method, validation and evaluation. IEEE Trans. Med. Imaging 24(4), 540–548 (2005)CrossRefGoogle Scholar
  34. 34.
    Pelc, N.J., Herfkens, R.J., Shimakawa, A., Enzmann, D.R.: Phase contrast cine magnetic resonance imaging. Magn. Reson. Q. 7, 229–254 (1991)Google Scholar
  35. 35.
    Persson, M., Solem, J.E., Markenroth, K., Svensson, J., Heyden, A.: Phase contrast MRI segmentation using velocity and intensity. Scale Space PDE Methods Comput. Vis. 3459, 119–130 (2005)CrossRefGoogle Scholar
  36. 36.
    Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: The state of the art in flow visualisation: feature extraction and tracking. Comput. Graph. Forum 22(4), 775–792 (2003)CrossRefGoogle Scholar
  37. 37.
    Pruessmann, K., Boesiger, P., Kozerke, S., Dydak, U. (Gyrotools): GTFlow. (last visited)
  38. 38.
    Rolf, M.P., Hofman, M.B.M., Gatehouse, P.D., Markenroth-Bloch, K., Heymans, M.W., Ebbers, T., Graves, M.J., Totman, J.J., Werner, B., van Rossum, A.C., Kilner, P.J., Heethaar, R.M.: Sequence optimization to reduce velocity offsets in cardiovascular magnetic resonance volume flow quantification - a multi-vendor study. J. Cardiovasc. Magn. Reson. 13(1), 18 (2011)CrossRefGoogle Scholar
  39. 39.
    Schlick, C.: A customizable reflectance model for everyday rendering. In: Proceedings of Fourth Eurographics Workshop on Rendering, pp. 73–83 (1993)Google Scholar
  40. 40.
    Solem, J.E., Persson, M., Heyden, A.: Velocity based segmentation in phase-contrast MRI images. In: Medical Image Computing and Computer-Assisted Intervention, pp. 459–466 (2004)Google Scholar
  41. 41.
    Soni, B., Thompson, D., Machiraju, R.: Visualizing particle/flow structure interactions in the small bronchial tubes. IEEE Trans. Vis. Comput. Graph. 14, 1412–1427 (2008).
  42. 42.
    Tappenbeck, A., Preim, B., Dicken, V.: Distance-based transfer function design: specification methods and applications. In: Proceedings of Simulation und Visualisierung, pp. 259–274 (2006)Google Scholar
  43. 43.
    Telea, A., van Wijk, J.J.: Simplified representation of vector fields. In: Proceedings of the Conference on Visualization ’99: Celebrating Ten Years. VIS ’99, pp. 35–42. IEEE Computer Society Press, Los Alamitos, CA, USA (1999)Google Scholar
  44. 44.
    Torii, R., Oshima, M., Kobayashi, T., Takagi, K., Tezduyar, T.E.: Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput. Methods Appl. Mech. Eng. 198(45–46), 3613–3621 (2009)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    van Pelt, R., Nguyen, H., Haar Romeny, B., Vilanova, A.: Automated segmentation of blood flow regions in large thoracic arteries using 3D-cine PC-MRI measurements. Int. J. Comput. Assist. Radiol. Surg. 1–8 (2011)Google Scholar
  46. 46.
    van Pelt, R.: Oliván Bescós, J., Breeuwer, M., Clough, R.E., Gröller, M.E., ter Haar Romenij, B., Vilanova, A.: Exploration of 4D MRI blood flow using stylistic visualization. IEEE Trans. Vis. Comput. Graph. 16(6), 1339–1347 (2010). doi: 10.1109/TVCG.2010.153
  47. 47.
    van Pelt, R.: Oliván Bescós, J., Breeuwer, M., Clough, R., Gröller, M., ter Haar Romeny, B., Vilanova, A.: Interactive virtual probing of 4d mri blood flow. IEEE Trans. Vis. Comput. Graph. 17, 2153–2162 (2011)Google Scholar
  48. 48.
    Venkataraman, S. (NVidia): 4D visualization of cardiac flow. In: GPU Technology Conference (2010).
  49. 49.
    Venugopal, P., Valentino, D., Schmitt, H., Villablanca, J.P., Viñuela, F., Duckwiler, G.: Sensitivity of patient-specific numerical simulation of cerebal aneurysm hemodynamics to inflow boundary conditions. J. Neurosurg. 106(6), 1051–1060 (2007)CrossRefGoogle Scholar
  50. 50.
    Viola, I., Kanitsar, A., Groller, M.E.: Importance-driven feature enhancement in volume visualization. IEEE Trans. Vis. Comput. Graph. 11, 408–418 (2005)CrossRefGoogle Scholar
  51. 51.
    Vlaardingerbroek, M.T., den Boer, J.A.: Magnetic Resonance Imaging. Springer, Berlin (1999)CrossRefGoogle Scholar
  52. 52.
    Wischgoll, T., Choy, J.S., Ritman, E., Kassab, G.S.: Validation of image-based extraction method for morphometry of coronary arteries. Ann. Biomed. Eng. 36(3), 356–368 (2008)CrossRefGoogle Scholar
  53. 53.
    World Health Organization: Cardiovascular diseases (CVDs) (2011).
  54. 54.
    Yang, G.Z., Burger, P., Kilner, P.J., Karwatowski, S.P., Firmin, D.N.: Dynamic range extension of cine velocity measurements using motion-registered spatiotemporal phase unwrapping. J. Magn. Reson. Imaging 6(3), 495–502 (1996)CrossRefGoogle Scholar
  55. 55.
    Yu, H., Wang, C., Ma, K.L.: Parallel hierarchical visualization of large time-varying 3d vector fields. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC ’07, pp. 24:1–24:12. ACM, New York, NY, USA (2007)Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • A. Vilanova
    • 1
  • Bernhard Preim
    • 2
  • Roy van Pelt
    • 1
  • Rocco Gasteiger
    • 2
  • Mathias Neugebauer
    • 2
  • Thomas Wischgoll
    • 3
  1. 1.Computer Graphics and VisualizationEEMCS - Delft University of Technology2628 CD DelftThe Netherlands
  2. 2.Institut Für Simulation Und GraphikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  3. 3.Computer Science and EngineeringWright State UniversityDaytonUSA

Personalised recommendations