Skip to main content

From Individual to Population: Challenges in Medical Visualization

  • Chapter
  • First Online:

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Due to continuing advances in medical imaging technology, and in medicine itself, techniques for visualizing medical image data have become increasingly important. In this chapter, we present a brief overview of the past 30 years of developments in medical visualization, after which we discuss the research challenges that we foresee for the coming decade.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.brainlab.com/art/2841/4/surgical-pacs-access/

References

  1. Altobelli, D.E., Kikinis, R., Mulliken, J.B., Cline, H., Lorensen, W., Jolesz, F.: Computer-assisted three-dimensional planning in craniofacial surgery. Plast. Reconstr Surg 92(4), 576–585; discussion 586–587 (1993)

    Google Scholar 

  2. Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proceedings of IEEE Conference on Visualization, 1997. Visualization’97, pp. 167–173. IEEE (1997). doi: 10.1109/VISUAL.1997.663875

  3. Bartz, D.: Virtual endoscopy in research and clinical practice. Comput. Graph. Forum 24(1), 111–126 (2005). doi:10.1111/j.1467-8659.2005.00831.x

    Article  Google Scholar 

  4. Basser, P.: Fiber-tractography via diffusion tensor MRI (DT-MRI). In: Proceedings of the 6th Annual Meeting ISMRM, Sydney, Australia, vol. 1226 (1998)

    Google Scholar 

  5. Basser, P., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994). doi:10.1016/S0006-3495(94)80775-1

    Article  Google Scholar 

  6. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Resonance Med. 44(4), 625–632 (2000). (Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine)

    Article  Google Scholar 

  7. Behrens, U., Teubner, J., Evertsz, C., Walz, M., Jürgens, H., Peitgen, H.O.: Computer-assisted dynamic evaluation of contrast-enhanced-MRI. In: Proceedings of Computer Assisted Radiology, pp. 362–367 (1996)

    Google Scholar 

  8. Beyer, J., Hadwiger, M., Wolfsberger, S., Buhler, K.: High-quality multimodal volume rendering for preoperative planning of neurosurgical interventions. IEEE Trans. Vis. Comput. Graph. 13(6), 1696–1703 (2007). doi:10.1109/TVCG.2007.70560

    Article  Google Scholar 

  9. Blaas, J., Botha, C.P., Post, F.H.: Interactive visualization of multi-field medical data using linked physical and feature-space views. In: K. Museth, A. Ynnerman, T. Möller (eds.) Proceedings of Eurographics / IEEE-VGTC EuroVis, pp. 123–130 (2007)

    Google Scholar 

  10. Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.: Illustrative context-preserving volume rendering. Proc. EUROVIS 2005, 69–76 (2005)

    Google Scholar 

  11. Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving exploration of volume data. IEEE Trans. Vis. Comput. Graph. 12(6), 1559–1569 (2006). doi:http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.96

  12. Bruckner, S., Gröller, E.: Enhancing depth-perception with flexible volumetric halos. IEEE Trans. Vis. Comput. Graph. 13(6), 1344–1351 (2007). doi:http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70555

  13. Cai, W., Sakas, G.: Data intermixing and multi-volume rendering. Comput. Graph. Forum 18(3), 359–368 (1999). doi:10.1111/1467-8659.00356

    Article  Google Scholar 

  14. Cerqueira, M.D., Weissman, N.J., Dilsizian, V., Jacobs, A.K., Kaul, S., Laskey, W.K., Pennell, D.J., Rumberger, J.A., Ryan, T., Verani, M.S.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105(4), 539–542 (2002). doi:10.1161/hc0402.102975

    Article  Google Scholar 

  15. Chan, M.Y., Qu, H., Chung, K.K., Mak, W.H., Wu, Y.: Relation-aware volume exploration pipeline. IEEE Trans. Vis. Comput. Graph. 14(6), 1683–1690 (2008). doi:10.1109/TVCG.2008.159

    Article  Google Scholar 

  16. Coto, E., Grimm, S., Bruckner, S., Gröller, E., Kanitsar, A., Rodriguez, O.: MammoExplorer: an advanced CAD application for breast DCE-MRI. In: Proceedings of Vision, Modelling, and Visualization (VMV), pp. 91–98 (2005)

    Google Scholar 

  17. Csébfalvi, B., Mroz, L., Hauser, H., König, A., Gröller, E.: Fast visualization of object contours by Non-Photorealistic volume rendering. Comput. Graph. Forum 20(3), 452–460 (2001). doi:10.1111/1467-8659.00538

    Article  Google Scholar 

  18. Dick, C., Georgii, J., Burgkart, R., Westermann, R.: Stress tensor field visualization for implant planning in orthopedics. IEEE Trans. Vis. Comput. Graph. 15(6), 1399–1406 (2009). doi:10.1109/TVCG.2009.184

    Article  Google Scholar 

  19. Drebin, R.A., Carpenter, L., Hanrahan, P.: Volume rendering. SIGGRAPH Comput. Graph. 22(4), 65–74 (1988). doi: 10.1145/378456.378484

  20. Ebert, D., Rheingans, P.: Volume illustration: non-photorealistic rendering of volume models. In: Proceedings of the conference on visualization ’00. VIS ’00, pp. 195–202. IEEE Computer Society Press, Los Alamitos, CA, USA (2000)

    Google Scholar 

  21. Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Hirsch, B.E., Lotufo, R.D.A.: User-steered image segmentation paradigms: Live wire and live lane. Graph. Models Image Process. 60(4), 233–260 (1998). doi:10.1006/gmip.1998.0475

    Article  Google Scholar 

  22. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9(2), 195–207 (1999). doi:10.1006/nimg.1998.0396

    Article  Google Scholar 

  23. Gerig, G., Koller, T., Székely, G., Brechbühler, C., Kübler, O.: Symbolic description of 3-d structures applied to cerebral vessel tree obtained from MR angiography volume data. In: Barrett, H.H., Gmitro, A.F. (eds.) Inf. Process. Med. Imaging, vol. 687, pp. 94–111. Springer, Berlin (1993)

    Chapter  Google Scholar 

  24. Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. 100(1), 253–258 (2003). doi:10.1073/pnas.0135058100

    Article  Google Scholar 

  25. Hagmann, P., Jonasson, L., Maeder, P., Thiran, J.P., Wedeen, V.J., Meuli, R.: Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiograph. Rev. Publ. Radiol. Soc. North Am. Inc. 26(Suppl 1), S205–S223 (2006). doi: 10.1148/rg.26si065510

  26. Höhne, K.H., Bernstein, R.: Shading 3D-Images from CT using gray-level gradients. IEEE Trans. Med. Imaging 5, 45–47 (1986). doi:10.1109/TMI.1986.4307738

    Article  Google Scholar 

  27. Höhne, K.H., Bomans, M., Tiede, U., Riemer, M.: Display of multiple 3D-objects using the generalized voxel-model. In: Medical Imaging II, Part B, Proceedings of SPIE 914, pp. 850–854. Newport Beach (1988)

    Google Scholar 

  28. Hong, L., Kaufman, A., Wei, Y.C., Viswambharan, A., Wax, M., Liang, Z.: 3D virtual colonoscopy. In: Proceedings of Biomedical Visualization, 1995, pp. 26–32, 83. IEEE (1995). doi: 10.1109/BIOVIS.1995.528702

  29. Hong, L., Muraki, S., Kaufman, A., Bartz, D., He, T.: Virtual voyage: interactive navigation in the human colon. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’97, pp. 27–34. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1997). doi: 10.1145/258734.258750

  30. Hong, W., Qiu, F., Kaufman, A.: A pipeline for computer aided polyp detection. IEEE Trans. Vis. Comput. Graph. 12(5), 861–868 (2006). doi:10.1109/TVCG.2006.112

    Article  Google Scholar 

  31. Hsiao, E.M., Rybicki, F.J., Steigner, M.: CT coronary angiography: 256-slice and 320-detector row scanners. Current Cardiol. Reports 12(1), 68–75 (2010). doi:10.1007/s11886-009-0075-z. PMID: 20425186 PMCID: 2893879

    Article  Google Scholar 

  32. Interrante, V., Fuchs, H., Pizer, S.: Enhancing transparent skin surfaces with ridge and valley lines. In: IEEE Conference on Visualization, 1995. Proceedings of Visualization’95, pp. 52–59, 438 (1995). doi: 10.1109/VISUAL.1995.480795

  33. Jeong, W., Beyer, J., Hadwiger, M., Blue, R., Law, C., Vazquez, A., Reid, C., Lichtman, J., Pfister, H.: SSECRETT and NeuroTrace: interactive visualization and anaysis tools for large-scale neuroscience datasets. IEEE Comput. Graph. Appl. 99, 1–1 (2011). doi: 10.1109/MCG.2011.33

  34. Jeong, W.K., Schneider, J., Turney, S.G., Faulkner-Jones, B.E., Meyer, D., Westermann, R., Reid, R.C., Lichtman, J., Pfister, H.: Interactive histology of large-scale biomedical image stacks. IEEE Trans. Vis. Comput. Graph. 16(6), 1386–1395 (2010). doi:10.1109/TVCG.2010.168

    Article  Google Scholar 

  35. John, U., Hensel, E., Lüdemann, J., Piek, M., Sauer, S., Adam, C., Born, G., Alte, D., Greiser, E., Haertel, U., Hense, H.W., Haerting, J., Willich, S., Kessler, C.: Study of health in pomerania (SHIP): a health examination survey in an east german region: objectives and design. Soc. Preventive Med. 46, 186–194 (2001). doi:10.1007/BF01324255

    Article  Google Scholar 

  36. Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., Gröller, M.E.: CPR: curved planar reformation. In: Proceedings of the Conference on Visualization ’02. VIS’02, pp. 37–44. IEEE Computer Society, Washington, DC, USA (2002)

    Google Scholar 

  37. Khlebnikov, R., Kainz, B., Muehl, J., Schmalstieg, D.: Crepuscular rays for tumor accessibility planning. IEEE Trans. Vis. Comput. Graph. 17(12), 2163–2172 (2011). doi:10.1109/TVCG.2011.184

    Article  Google Scholar 

  38. Kindlmann, G., Weinstein, D.: Hue-balls and lit-tensors for direct volume rendering of diffusion tensor fields. In: Proceedings of the Conference on Visualization ’99: Celebrating Ten Years. VIS ’99, pp. 183–189. IEEE Computer Society Press, Los Alamitos, CA, USA (1999)

    Google Scholar 

  39. Kindlmann, G., Weinstein, D., Hart, D.: Strategies for direct volume rendering of diffusion tensor fields. IEEE Trans. Vis. Comput. Graph. 6(2), 124–138 (2000). doi:10.1109/2945.856994

    Article  Google Scholar 

  40. Kindlmann, G., Whitaker, R., Tasdizen, T., Moller, T.: Curvature-based transfer functions for direct volume rendering: Methods and applications. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), VIS ’03, p. 67. IEEE Computer Society, Washington, DC, USA (2003). doi: 10.1109/VISUAL.2003.1250414

  41. Kok, P., Baiker, M., Hendriks, E.A., Post, F.H., Dijkstra, J., Löwik, C.W., Lelieveldt, B.P., Botha, C.P.: Articulated planar reformation for change visualization in small animal imaging. IEEE Trans. Vis. Comput. Graph. 16(6), 1396–1404 (2010). doi:10.1109/TVCG.2010.134

    Article  Google Scholar 

  42. Kok, P., Dijkstra, J., Botha, C.P., Post, F.H., Kaijzel, E., Que, I., Lowik, C., Reiber, J., Lelieveldt, B.P.F.: Integrated visualization of multi-angle bioluminescence imaging and micro CT. In: Cleary, K.R., Miga, M.I. (eds.) Proceedings of SPIE Medical Imaging 2007, vol. 6509 (2007)

    Google Scholar 

  43. Krekel, P.R., Botha, C.P., Valstar, E.R., Bruin, P.W.d., Rozing, P.M., Post, F.H.: Interactive simulation and comparative visualisation of the bone-determined range of motion of the human shoulder. In: T. Schulze, G. Horton, B. Preim, S. Schlechtweg (eds.) Proceedings of Simulation and Visualization, pp. 275–288. SCS Publishing House Erlangen (2006). Best Paper Award

    Google Scholar 

  44. Kroes, T., Post, F.H., Botha, C.P.: Exposure render: an interactive photo-realistic volume rendering framework. PLoS ONE 7, e38586 (2012)

    Google Scholar 

  45. Krüger, J., Westermann, R.: Acceleration techniques for GPU-based volume rendering. In: IEEE Visualization Conference, p. 38. IEEE Computer Society, Los Alamitos, CA, USA (2003). doi:http://doi.ieeecomputersociety.org/10.1109/VIS.2003.10001

  46. de Leeuw, F.E., de Groot, J.C., Achten, E., Oudkerk, M., Ramos, L.M.P., Heijboer, R., Hofman, A., Jolles, J., van Gijn, J., Breteler, M.M.B.: Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. the rotterdam scan study. J. Neurol. Neurosurg. Psychiatry 70(1), 9–14 (2001). doi:10.1136/jnnp.70.1.9

    Article  Google Scholar 

  47. Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988). doi:10.1109/38.511

    Article  Google Scholar 

  48. Lindemann, F., Ropinski, T.: About the influence of illumination models on image comprehension in direct volume rendering. IEEE Trans. Vis. Comput. Graph. 17(12), 1922–1931 (2011). doi:10.1109/TVCG.2011.161

    Article  Google Scholar 

  49. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987). doi:10.1145/37402.37422

    Article  Google Scholar 

  50. Lundström, C., Rydell, T., Forsell, C., Persson, A., Ynnerman, A.: Multi-touch table system for medical visualization: application to orthopedic surgery planning. IEEE Trans. Vis. Comput. Graph. 17(12), 1775–1784 (2011). doi:10.1109/TVCG.2011.224

    Article  Google Scholar 

  51. Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In: Proceedings of the 22nd Annual Conference on Computer graphics and Interactive Techniques, SIGGRAPH’95, pp. 191–198. ACM, New York, NY, USA (1995). doi: 10.1145/218380.218442

  52. Moser, M., Weiskopf, D.: Interactive volume rendering on mobile devices. In: Proceedings of Vision, Modeling, and Visualization 2008, 8–10 Oct 2008, Konstanz, Germany, p. 217 (2008)

    Google Scholar 

  53. Neugebauer, M., Gasteiger, R., Beuing, O., Diehl, V., Skalej, M., Preim, B.: Map displays for the analysis of scalar data on cerebral aneurysm surfaces. Comput. Graph. Forum 28(3), 895–902 (2009). doi:10.1111/j.1467-8659.2009.01459.x

    Article  Google Scholar 

  54. Oeltze, S., Doleisch, H., Hauser, H., Muigg, P., Preim, B.: Interactive visual analysis of perfusion data. IEEE Trans. Vis. Comput. Graph. 13(6), 1392–1399 (2007). doi: 10.1109/TVCG.2007.70569

  55. Olabarriaga, S., Smeulders, A.: Interaction in the segmentation of medical images: a survey. Med. Image Anal. 5(2), 127–142 (2001). doi:10.1016/S1361-8415(00)00041-4

    Article  Google Scholar 

  56. Prassni, J.S., Ropinski, T., Hinrichs, K.: Uncertainty-aware guided volume segmentation. IEEE Trans. Vis. Comput. Graph. 16(6), 1358–1365 (2010). doi:10.1109/TVCG.2010.208

    Article  Google Scholar 

  57. Preim, B., Bartz, D.: Visualization in Medicine. Morgan Kaufmann, Burlington (2007)

    Google Scholar 

  58. Rieder, C., Ritter, F., Raspe, M., Peitgen, H.: Interactive visualization of multimodal volume data for neurosurgical tumor treatment. Comput. Graph. Forum 27, 1055–1062 (2008)

    Article  Google Scholar 

  59. Rieder, C., Weihusen, A., Schumann, C., Zidowitz, S., Peitgen, H.: Visual support for interactive Post-Interventional assessment of radiofrequency ablation therapy. Comput. Graph. Forum 29(3), 1093–1102 (2010). doi:10.1111/j.1467-8659.2009.01665.x

    Article  Google Scholar 

  60. Saad, A., Hamarneh, G., Möller, T.: Exploration and visualization of segmentation uncertainty using shape and appearance prior information. IEEE Trans. Vis. Comput. Graph. 16(6), 1366–1375 (2010). doi:10.1109/TVCG.2010.152

    Article  Google Scholar 

  61. Saito, T., Takahashi, T.: Comprehensible rendering of 3-d shapes. SIGGRAPH Comput. Graph. 24(4), 197–206 (1990). doi:10.1145/97880.97901

    Article  Google Scholar 

  62. Shinagawa, Y., Kunii, T.L.: Constructing a Reeb graph automatically from cross sections. IEEE Comput. Graph. Appl. 11(6), 44–51 (1991). doi:10.1109/38.103393

    Article  Google Scholar 

  63. Steenwijk, M.D., Milles, J., Buchem, M.A., Reiber, J.H., Botha, C.P.: Integrated visual analysis for heterogeneous datasets in cohort studies. In: IEEE VisWeek Workshop on Visual Analytics in Health Care (2010)

    Google Scholar 

  64. Sunguroff, A., Greenberg, D.: Computer generated images for medical applications. In: Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’78, pp. 196–202. ACM, New York, NY, USA (1978). doi: 10.1145/800248.807390

  65. Takahashi, S., Fujishiro, I., Takeshima, Y., Bi, C.: Previewing volume decomposition through optimal viewpoints. In: Scientific Visualization: Interactions, Features, Metaphors (2011)

    Google Scholar 

  66. Taylor, C., Draney, M., Ku, J., Parker, D., Steele, B., Wang, K., Zarins, C.: Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg. 4(5), 231–247 (1999)

    Article  Google Scholar 

  67. Termeer, M., Bescos, J.O., Breeuwer, M., Vilanova, A., Gerritsen, F., Gröller, M.E.: CoViCAD: comprehensive visualization of coronary artery disease. IEEE Trans. Vis. Comput. Graph. 13(6), 1632–1639 (2007). doi:10.1109/TVCG.2007.70550

    Article  Google Scholar 

  68. Tietjen, C., Isenberg, T., Preim, B.: Combining silhouettes, surface, and volume rendering for surgery education and planning. In: IEEE/Eurographics Symposium on Visualization (EuroVis), pp. 303–310 (2005)

    Google Scholar 

  69. Tory, M., Röber, N., Möller, T., Celler, A., Atkins, M.S.: 4D space-time techniques: a medical imaging case study. In: Proceedings of IEEE Visualization 2001, pp. 473–476. IEEE Computer Society, Washington, DC, USA (2001)

    Google Scholar 

  70. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002). doi:10.1002/mrm.10268

    Article  Google Scholar 

  71. Vannier, M.W., Marsh, J.L., Warren, J.O.: Three dimensional computer graphics for craniofacial surgical planning and evaluation. SIGGRAPH Comput. Graph. 17(3), 263–273 (1983). doi:10.1145/964967.801157

    Article  Google Scholar 

  72. Vilanova, A., Wegenkittl, R., König, A., Gröller, E.: Nonlinear virtual colon unfolding. In: Proceedings of the Conference on Visualization’01. VIS ’01, pp. 411–420. IEEE Computer Society, Washington, DC, USA (2001)

    Google Scholar 

  73. Wang, T.D., Plaisant, C., Quinn, A.J., Stanchak, R., Murphy, S., Shneiderman, B.: Aligning temporal data by sentinel events: discovering patterns in electronic health records. In: Proceedings of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, CHI ’08, pp. 457–466. ACM, New York, NY, USA (2008). doi: 10.1145/1357054.1357129

  74. Ware, C.: Designing with a 2 1/2-d attitude. Inf. Des. J. 10(3), 258–265 (2001). doi:10.1075/idj.10.3.07war

    Google Scholar 

  75. Weber, G.H., Dillard, S.E., Carr, H., Pascucci, V., Hamann, B.: Topology-controlled volume rendering. IEEE Trans. Vis. Comput. Graph. 13(2), 330–341 (2007). doi:10.1109/TVCG.2007.47

    Article  Google Scholar 

  76. Weinstein, D., Kindlmann, G., Lundberg, E.: Tensorlines: advection-diffusion based propagation through diffusion tensor fields. In: Proceedings of the Conference on Visualization ’99: Celebrating Ten Years. VIS ’99, pp. 249–253. IEEE Computer Society Press, Los Alamitos, CA, USA (1999)

    Google Scholar 

  77. Zachow, S., Muigg, P., Hildebrandt, T., Doleisch, H., Hege, H.C.: Visual exploration of nasal airflow. IEEE Trans. Vis. Comput. Graph. 15(6), 1407–1414 (2009). doi:http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.198

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Botha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Botha, C.P., Preim, B., Kaufman, A.E., Takahashi, S., Ynnerman, A. (2014). From Individual to Population: Challenges in Medical Visualization. In: Hansen, C., Chen, M., Johnson, C., Kaufman, A., Hagen, H. (eds) Scientific Visualization. Mathematics and Visualization. Springer, London. https://doi.org/10.1007/978-1-4471-6497-5_23

Download citation

Publish with us

Policies and ethics