Feature-Based Visualization of Multifields

  • Harald Obermaier
  • Ronald Peikert
Part of the Mathematics and Visualization book series (MATHVISUAL)


Feature-based techniques are one of the main categories of methods used in scientific visualization. Features are structures in a dataset that are meaningful within the scientific or engineering context of the dataset. Extracted features can be visualized directly, or they can be used indirectly for modifying another type of visualization. In multifield data, each of the component fields can be searched for features, but in addition, there can be features of the multifield which rely on information form several of its components and which cannot be found by searching in a single field. In this chapter we give a survey of feature-based visualization of multifields, taking both of these feature types into account.


Computational Fluid Dynamics Scalar Field Feature Extraction Technique Lagrangian Coherent Structure Feature Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ANSYS CFX Reference Guide, Release 12. ANSYS Inc, Apr 2009Google Scholar
  2. 2.
    Banks, D.C., Singer, B.A.: A predictor-corrector technique for visualizing unsteady flow. IEEE Trans. Vis. Comp. Graph. 1(2), 151–163 (1995)CrossRefGoogle Scholar
  3. 3.
    Bauer, D.: Ronald Peikert, Mie Sato, and Mirjam Sick. A case study in selective visualization of unsteady 3d flow. In: IEEE Visualization ’02 Proceedings, pp. 525–528. IEEE Computer Society, Oct 2002Google Scholar
  4. 4.
    Blaas, J., Botha, C.P., Post, F.H.: Interactive visualization of multi-field medical data using linked physical and feature-space views. In: Museth, K., Möller, T., Ynnerman, A. (eds.) Eurographics/IEEE-VGTC Symposium on Visualization, pp. 123–130. Eurographics Association, Norrköping (2007)Google Scholar
  5. 5.
    Bürger, R., Hauser, H.: Visualization of multi-variate scientific data. In: EuroGraphics State of the Art Reports (STARs), pp. 117–134 (2007)Google Scholar
  6. 6.
    Canny, J.: A computational approach to edge detection. Pattern Anal. Mach. Intell. IEEE Trans. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  7. 7.
    Cottet, G.H., Koumoutsakos, P.: Vortex Methods—Theory and Practice. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  8. 8.
    Doleisch, H., Gasser, M., Hauser, H.: Interactive feature specification for focus+context visualization of complex simulation data. In: Proceedings of the Symposium on Data Visualisation, pp. 239–248. Eurographics Association (2003)Google Scholar
  9. 9.
    Doleisch, H., Muigg, P., Hauser, H.: Interactive visual analysis of hurricane isabel with SimVis. Technical Report TR-VRVis-2004-058, VRVis Research Center, Vienna (2004)Google Scholar
  10. 10.
    Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Local and Global Comparison of Continuous Functions. In: Proceedings of the Conference on Visualization ’04, pp. 275–280. IEEE Computer Society (2004)Google Scholar
  11. 11.
    Fuchs, R., Peikert, R., Hauser, H., Sadlo, F., Muigg, P.: Parallel vectors criteria for unsteady flow vortices. IEEE Trans. Vis. Comput. Graph. 14(3), 615–626 (2008)CrossRefGoogle Scholar
  12. 12.
    Gosink, L., Anderson, J., Bethel, W., Joy, K.: Variable interactions in query-driven visualization. IEEE Trans. Vis. Comp. Graph. 13, 1400–1407 (2007)CrossRefGoogle Scholar
  13. 13.
    Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248–277 (2001)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Henze, C.: Feature Detection in Linked Derived Spaces. In: Proceedings of the Conference on Visualization ’98, VIS ’98, pp. 87–94. Los Alamitos, IEEE Computer Society Press, CA (1998)Google Scholar
  15. 15.
    Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, Stream and Convergence Zones in Turbulent Flows. In: 2. Proceedings of the 1988 Summer Program, pp. 193–208 (1988)Google Scholar
  16. 16.
    Jänicke, H., Böttinger, M., Tricoche, X., Scheuermann, G.: Automatic detection and visualization of distinctive structures in 3d unsteady multi-fields. Comput. Graph. Forum 27(3), 767–774 (2008)CrossRefGoogle Scholar
  17. 17.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–84 (1995)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Levy, Y., Degani, D., Seginer, A.: Graphical visualization of vortical flows by means of helicity. AIAA J. 28, 1347–1352 (1990)CrossRefGoogle Scholar
  19. 19.
    Love, A.L., Pang, A., Kao, D.L.: Visualizing spatial multivalue data. IEEE Comput. Graph. Appl. 25, 69–79 (2005)CrossRefGoogle Scholar
  20. 20.
    Miura, H., Kida, S.: Identification of tubular vortices in turbulence. J. Phys. Soc. Japan 66, 1331–1334 (1997)CrossRefMATHGoogle Scholar
  21. 21.
    Nagaraj, S., Natarajan, V.: Relation-aware isosurface extraction in multifield data. Vis. Comput. Graph. IEEE Trans. 17(2), 182–191 (2011)CrossRefGoogle Scholar
  22. 22.
    Nagaraj, S., Natarajan, V., Nanjundiah, R.S.: A gradient-based comparison measure for visual analysis of multifield data. Comput. Graph. Forum 30(3), 1101–1110 (2011)CrossRefGoogle Scholar
  23. 23.
    Neugebauer, M., Gasteiger, R., Beuing, O., Diehl, V., Skalej, M., Preim, B.: Combining map displays and 3D visualizations for the analysis of scalar data on cerebral aneurysm surfaces. Comput. Graph. Forum 28(3), 895–902 (2009)CrossRefGoogle Scholar
  24. 24.
    Obermaier, H., Hering-Bertram, M., Kuhnert, J., Hagen, H.: Volume deformations in grid-less flow simulations. Comput. Graph. Forum 28(3), 879–886 (2009)CrossRefGoogle Scholar
  25. 25.
    Peikert, R., Roth, M.: The “Parallel Vectors” Operator—A Vector Field Visualization Primitive. In: Proceedings of the 10th IEEE Visualization Conference (VIS ’99), pp. 263–270. IEEE Computer Society, Washington (1999)Google Scholar
  26. 26.
    Peikert, R., Sadlo, F.: Topology-guided visualization of constrained vector fields. In: Hagen, H., Hauser, H., Theisel, H. (eds.) Topology-Based Methods in Visualization, pp. 21–34. Springer-Verlag, Berlin (2007)CrossRefGoogle Scholar
  27. 27.
    Post, F., Vrolijk, B., Hauser, H., Laramee, R., Doleisch, H.: The state of the art in flow visualization: feature extraction and tracking. Comput. Graph. Forum 22(4), 775–792 (2003)CrossRefGoogle Scholar
  28. 28.
    Potter, K., Wilson, A., Bremer, P.T., Williams, D., Doutriaux, C., Pascucci, V., Johnson. C.R.: Ensemble-vis: A Framework for the Statistical Visualization of Ensemble Data. In: Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, ICDMW ’09, pp. 233–240. IEEE Computer Society, Washington (2009)Google Scholar
  29. 29.
    Reinders, F., Post, F.H., Spoelder, H.J.W.: Visualization of time-dependent data with feature tracking and event detection. Vis. Comput. 17(1), 55–71 (2001)CrossRefMATHGoogle Scholar
  30. 30.
    Sauber, N., Theisel, H., Seidel, H.-P.: Multifield-graphs: an approach to visualizing correlations in multifield scalar data. Vis. Comput. Graph. IEEE Trans. 12(5), 917–924 (2006)CrossRefGoogle Scholar
  31. 31.
    Smith, K.M., Banks, D.C., Druckman, N., Beason, K., Hussaini, M.Y.: Clustered ensemble averaging: a technique for visualizing qualitative features of stochastic simulations. J. Comput. Theor. Nanosci. 3(5), 752–760 (2006)Google Scholar
  32. 32.
    Stegmaier, S., Rist, U., Ertl, T.: Opening the Can of Worms: An Exploration Tool for Vortical Flows. In: Silva, C., Grer, E., Rushmeier, H. (eds.) Proceedings of IEEE Visualization ’05, pp. 463–470 (2005)Google Scholar
  33. 33.
    Sujudi D., Haimes, R.: Identification of Swirling Flow in 3D Vector Fields. Technical Report, pp. 95–1715. AIAA (1995)Google Scholar
  34. 34.
    Ueng, S.K., Sikorski, C., Ma, K.L.: Efficient streamline, streamribbon, and streamtube constructions on unstructured grids. IEEE Trans. Vis. Comput. Graph. 2, 100–110 (1996)CrossRefGoogle Scholar
  35. 35.
    Unger, A., Muigg, P., Doleisch, H., Schumann, H.: Visualizing statistical properties of smoothly brushed data subsets. In: Information Visualisation. IV ’08. 12th International Conference, pp. 233–239 ( 2008)Google Scholar
  36. 36.
    Weinkauf, T., Hege, H.-C., Noack, B.R., Schlegel, M., Dillmann, A.: Coherent structures in a transitional flow around a backward-facing step. Phys. Fluids 15(9), S3 (2003)CrossRefGoogle Scholar
  37. 37.
    Woodring, J., Shen, H.W.: Multi-variate, time varying, and comparative visualization with contextual cues. Vis. Comput. Graph. IEEE Trans. 12(5), 909–916 (2006)CrossRefGoogle Scholar
  38. 38.
    Ye, X., Kao, D., Pang, A.: Strategy for scalable seeding of 3d streamlines. In: Proceedings IEEE Visualization ’05, pp. 471–478 (2005)Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.UC DavisDavisUSA
  2. 2.ETH ZurichZurichSwitzerland

Personalised recommendations