Skip to main content

The Renaissance of Iron Pyrite Photovoltaics: Progress, Challenges, and Perspectives

  • Chapter
  • First Online:
Book cover Low-cost Nanomaterials

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Pyrite has long been proposed as a green solar cell material. Even with its promising properties, studies on pyrite have lagged behind many other semiconducting materials. Unanswered questions about the affects of defects and how to grow pure crystalline material still exist. With the rise of nanochemistry and more powerful computational methods, pyrite is seeing an explosion of new studies. This chapter first presents pyrite and its green promise as a material, followed by the materials characteristics. It then moves into synthesis of pyrite, starting with old methods and then transitioning into different methods of nanocrystal creation. Finally, photo-devices created out of pyrite materials are discussed. The chapter then wraps up with a summary and what still needs to be done for pyrite to achieve its golden status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zweibel K, Mason J, Fthenakis V (2008) By 2050 solar power could end US dependence on foreign oil and slash greenhouse gas emissions. Sci Am 298(1):64–73

    Article  Google Scholar 

  2. Green M (2000) Power to the people: sunlight to electricity using solar cells. University of New South Wales Press, Sydney

    Google Scholar 

  3. Wadia C, Wu Y, Gul S, Volkman SK, Guo J, Alivisatos AP (2009) Surfactant-assisted hydrothermal synthesis of single phase pyrite FeS2 nanocrystals. Chem Mater 21(13):2568–2570

    Google Scholar 

  4. Ennaoui A, Fiechter S, Pettenkofer C, Alonsovante N, Buker K, Bronold M et al (1993) Iron disulfide for solar-energy conversion. Sol Energy Mater Sol Cells 29(4):289–370. PubMed PMID: WOS:A1993LH67000001 (English)

    Google Scholar 

  5. Altermatt PP, Kiesewetter T, Ellmer K, Tributsch H (2002) Specifying targets of future research in photovoltaic devices containing pyrite (FeS2) by numerical modelling. Sol Energy Mater Sol Cells 71(2):181–195

    Google Scholar 

  6. Emsley J (2011) Nature’s building blocks: an A–Z guide to the elements. Oxford University Press, USA

    Google Scholar 

  7. Wadia C, Alivisatos AP, Kammen DM (2009) Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ Sci Technol 43(6):2072–2077

    Google Scholar 

  8. Chapman P, Roberts F (1983) Metal resources and energy. Buttersworths, London

    Google Scholar 

  9. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427

    Google Scholar 

  10. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868

    Google Scholar 

  11. Contreras MA, Egaas B, Ramanathan K, Hiltner J, Swartzlander A, Hasoon F et al (1999) Progress toward 20 % efficiency in Cu(In, Ga)Se2 polycrystalline thin-film solar cells. Prog Photovoltaics Res Appl 7(4):311–316

    Article  Google Scholar 

  12. Ren S, Chang L-Y, Lim S-K, Zhao J, Smith M, Zhao N et al (2011) Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett 11(9):3998–4002

    Google Scholar 

  13. Luther JM, Law M, Beard MC, Song Q, Reese MO, Ellingson RJ et al (2008) Schottky solar cells based on colloidal nanocrystal films. Nano Lett 8(10):3488–3492

    Google Scholar 

  14. Arango AC, Oertel DC, Xu Y, Bawendi MG, Bulović V (2009) Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer. Nano Lett 9(2):860–863

    Google Scholar 

  15. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747):462–465

    Google Scholar 

  16. Gledhill SE, Scott B, Gregg BA (2005) Organic and nano-structured composite photovoltaics: an overview. J Mater Res 20(12):3167–3179. PubMed PMID: WOS:000233628600002

    Google Scholar 

  17. Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–888. PubMed PMID: WOS:000250230600042

    Google Scholar 

  18. Wu Y, Wadia C, Ma W, Sadtler B, Alivisatos AP (2008) Synthesis and photovoltaic application of copper (I) sulfide nanocrystals. Nano Lett 8(8):2551–2555. PubMed PMID: WOS:000258440700076

    Google Scholar 

  19. Yu L, Lany S, Kykyneshi R, Jieratum V, Ravichandran R, Pelatt B et al (2011) Iron chalcogenide photovoltaic absorbers. Adv Energy Mater 1(5):748–753. PubMed PMID: WOS:000295140100005

    Google Scholar 

  20. Bronold M, Tomm Y, Jaegermann W (1994) surface-states on cubic d-band semiconductor pyrite (FES(2)). Surf Sci 314(3):L931–L936. PubMed PMID: WOS:A1994NZ92900011

    Google Scholar 

  21. Sun R, Chan MKY, Ceder G (2011) First-principles electronic structure and relative stability of pyrite and marcasite: implications for photovoltaic performance. Phys Rev B 83(23):235311. PubMed PMID: WOS:000291398400006

    Google Scholar 

  22. Sun R, Chan MKY, Kang S, Ceder G. Intrinsic stoichiometry and oxygen-induced p-type conductivity of pyrite FeS_{2}. Phys Rev B 84(3):035212

    Google Scholar 

  23. Macpherson HA, Stoldt CR (2012) Iron pyrite nanocubes: size and shape considerations for photovoltaic application. ACS Nano 6(10):8940–8949. PubMed PMID: WOS:000310096100053

    Google Scholar 

  24. Kirkeminde A, Ren S (2013) Thermodynamic control of iron pyrite nanocrystal synthesis with high photoactivity and stability. J Mater Chem A 1(1):49–54

    Article  Google Scholar 

  25. Wang D, Wang Q, Wang T (2010) Shape controlled growth of pyrite FeS2 crystallites via a polymer-assisted hydrothermal route. CrystEngComm 12(11):3797–3805. PubMed PMID: WOS:000283315900078

    Google Scholar 

  26. Barnard AS, Russo SP (2007) Shape and thermodynamic stability of pyrite FeS2 Nanocrystals and Nanorods. J Phys Chem C 111(31):11742–11746

    Google Scholar 

  27. Barnard AS, Russo SP (2009) Modelling nanoscale FeS2 formation in sulfur rich conditions. J Mater Chem 19(21):3389–3394. PubMed PMID: WOS:000266269300010

    Google Scholar 

  28. Ennaoui A, Fiechter S, Jaegermann W, Tributsch H (1986) Photoelectrochemistry of highly quantum efficient single‐crystalline n‐FeS2 (Pyrite). J Electrochem Soc 133(1):97–106

    Google Scholar 

  29. Ennaoui A, Tributsch H (1984) Iron sulphide solar cells. Sol Cells 13(2):197–200

    Article  Google Scholar 

  30. Sullivan P, Yelton J, Reddy K (1988) Iron sulfide oxidation and the chemistry of acid generation. Environ Geol 11(3):289–295

    Google Scholar 

  31. Rickard DT (1975) Kinetics and mechanism of pyrite formation at low-temperatures. Am J Sci 275(6):636–652. PubMed PMID: WOS:A1975AD80800002

    Google Scholar 

  32. Luther GW (1991) Pyrite synthesis via polysulfide compounds. Geochim Cosmochim Acta 55(10):2839–2849. PubMed PMID: WOS:A1991GK84900012

    Google Scholar 

  33. Rickard D, Luther GW (1997) Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 degrees C: the mechanism. Geochim Cosmochim Acta 61(1):135–147. PubMed PMID: WOS:A1997WE86100009

    Google Scholar 

  34. Rickard D (1997) Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 degrees C: the rate equation. Geochim Cosmochim Acta 61(1):115–134. PubMed PMID: WOS:A1997WE86100008

    Google Scholar 

  35. Harmandas NG, Fernandez EN, Koutsoukos PG (1998) Crystal growth of pyrite in aqueous solutions. Inhibition by organophosphorus compounds. Langmuir 14(5):1250–1255. PubMed PMID: WOS:000072390800040

    Google Scholar 

  36. Rickard D, Luther GW (2007) III. Chemistry of iron sulfides. Chem Rev 107(2):514–562. PubMed PMID: WOS:000244206600010

    Google Scholar 

  37. Fiechter S, Mai J, Ennaoui A, Szacki W (1986) chemical vapor transport of pyrite (FeS2) with halogen (CL, BR, I). J Cryst Growth 78(3):438–444. PubMed PMID: WOS:A1986F670100003

    Google Scholar 

  38. Fleming JG (1998) Growth of FeS2 (pyrite) from Te melts. J Cryst Growth 92(1–2):287–293. PubMed PMID: WOS:A1988R106400038

    Google Scholar 

  39. Bither TA, Bouchard RJ, Cloud WH, Donohue PC, Siemons WJ (1968) Transition metal pyrite dichalcogenides high-pressure synthesis and correlation of properties. Inorg Chem 7(11):2208–2220. PubMed PMID: WOS:A1968C016000008

    Google Scholar 

  40. Chatzitheodorou G, Fiechter S, Konenkamp R, Kunst M, Jaegermann W, Tributsch H (1986) Thin photoactive FeS2 (pyrite) films. Mater Res Bull 21(12):1481–1487. PubMed PMID: WOS:A1986F263200010

    Google Scholar 

  41. Thomas B, Ellmer K, Muller M, Hopfner C, Fiechter S, Tributsch H (1997) Structural and photoelectrical properties of FeS2 (pyrite) thin films grown by MOCVD. J Cryst Growth 170(1):808–812

    Article  Google Scholar 

  42. Morrish R, Silverstein R, Wolden CA (2012) Synthesis of stoichiometric FeS2 through plasma-assisted sulfurization of Fe2O3 nanorods. J Am Chem Soc 134(43):17854–19857

    Google Scholar 

  43. Chen X, Wang Z, Wang X, Wan J, Liu J, Qian Y (2005) Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties. Inorg Chem 44(4):951–954

    Google Scholar 

  44. Yuan B, Luan W, Tu S-t (2012) One-step synthesis of cubic FeS2 and flower-like FeSe2 particles by a solvothermal reduction process. Dalton Trans 41(3):772–776. PubMed PMID: WOS:000298753800012

    Google Scholar 

  45. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A et al (2000) Shape control of CdSe nanocrystals. Nature 404(6773):59–61. PubMed PMID: WOS:000085775100042

    Google Scholar 

  46. Peng ZA, Peng XG. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184. PubMed PMID: WOS:000166258800026

    Google Scholar 

  47. Peng ZA, Peng XG (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123(7):1389–1395. PubMed PMID: WOS:000167031300016

    Google Scholar 

  48. Peng ZA, Peng XG (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J Am Chem Soc 124(13):3343–3353. PubMed PMID: WOS:000174793400033

    Google Scholar 

  49. Acharya KP, Hewa-Kasakarage NN, Alabi TR, Nemitz I, Khon E, Ullrich B et al (2010) Synthesis of PbS/TiO2 colloidal heterostructures for photovoltaic applications. J Phys Chem C 114(29):12496–12504. PubMed PMID: WOS:000280070900019

    Google Scholar 

  50. Baumgardner WJ, Choi JJ, Lim Y-F, Hanrath T (2010) SnSe nanocrystals: synthesis, structure, optical properties, and surface chemistry. J Am Chem Soc 132(28):9519–9521. PubMed PMID: WOS:000280086800003

    Google Scholar 

  51. Dai Q, Li D, Chang J, Song Y, Kan S, Chen H et al (2007) Facile synthesis of magic-sized CdSe and CdTe nanocrystals with tunable existence periods. Nanotechnology 18(40):405603. PubMed PMID: WOS:000249735400016

    Google Scholar 

  52. Yarema M, Pichler S, Sytnyk M, Seyrkammer R, Lechner RT, Fritz-Popovski G et al (2011) Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 5(5):3758–3765. PubMed PMID: WOS:000290826800041

    Google Scholar 

  53. Puthussery J, Seefeld S, Berry N, Gibbs M, Law M (2012) Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics. J Am Chem Soc 133(4):716–719

    Google Scholar 

  54. Kirkeminde A, Ruzicka B, Wang R, Puna S, Zhao H, Ren SQ (2012) Synthesis and optoelectronic properties of two-dimensional FeS2 nanoplates. ACS Appl Mater Interfaces. doi:10.1021/am300089f

    Google Scholar 

  55. Zhang JT, Tang Y, Lee K, Min OY (2010) Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327(5973):1634–1638. PubMed PMID: WOS:000275970600041. English

    Google Scholar 

  56. Xu C, Zeng Y, Rui XH, Xiao N, Zhu JX, Zhang WY et al (2012) Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano 6(6):4713–4721. PubMed PMID: WOS:000305661300019 (English)

    Google Scholar 

  57. Buker K, Alonsovante N, Tributsch H (1992) Photovoltaic output limitation of N-FeS2 (pyrite) schottky barriers—a temperature-dependent characterization. J Appl Phys 72(12):5721–5728. PubMed PMID: WOS:A1992KC85000029

    Google Scholar 

  58. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Google Scholar 

  59. Ennaoui A, Fiechter S, Tributsch H, Giersig M, Vogel R, Weller H (1992) photoelectrochemical energy-conversion obtained with ultrathin organo-metallic-chemical-vapor-deposition layer of FeS2 (pyrite) on TiO2. J Electrochem Soc 139(9):2514–2518. PubMed PMID: WOS:A1992JL82500032

    Google Scholar 

  60. Steinhagen C, Harvey TB, Stolle CJ, Harris J, Korgel BA (2012) Pyrite nanocrystal solar cells: promising, or fool’s gold? J Phys Chem Lett 3(17):2352–2356. PubMed PMID: WOS:000308342500008

    Google Scholar 

  61. Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L et al Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10(10):765–771

    Google Scholar 

  62. Ren S, Chang L-Y, Lim S-K, Zhao J, Smith M, Zhao N et al Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett 11(9):3998–4002

    Google Scholar 

  63. Kirkeminde A, Scott R, Ren S (2012) All inorganic iron pyrite nano-heterojunction solar cells. Nanoscale 4(24):7649–7654. PubMed PMID: MEDLINE:23041909

    Google Scholar 

  64. Wang D-Y, Jiang Y-T, Lin C-C, Li S-S, Wang Y-T, Chen C-C et al (2012) Solution-processable pyrite FeS2 nanocrystals for the fabrication of heterojunction photodiodes with visible to NIR photodetection. Adv Mater 24(25):3415–3420

    Article  Google Scholar 

  65. Gong M, Kirkeminde A, Xie Y, Lu R, Liu J, Wu JZ et al (2012) Iron pyrite (FeS2) broad spectral and magnetically responsive photodetectors. Adv Funct Mater 78–83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenqiang Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Kirkeminde, A., Gong, M., Ren, S. (2014). The Renaissance of Iron Pyrite Photovoltaics: Progress, Challenges, and Perspectives. In: Lin, Z., Wang, J. (eds) Low-cost Nanomaterials. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6473-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6473-9_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6472-2

  • Online ISBN: 978-1-4471-6473-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics