Skip to main content

Design, Fabrication, and Modification of Cost-Effective Nanostructured TiO2 for Solar Energy Applications

  • Chapter
  • First Online:
Low-cost Nanomaterials

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

One of the greatest challenges for human society and civilization is the development of powerful technologies to harness renewable solar energy to satisfy the ever-growing energy demands. Semiconductor nanomaterials have important applications in the field of solar energy conversion. Among these, TiO2 represents one of the most promising functional semiconductors and is extensively utilized in photoelectrochemical applications, including photocatalysis (e.g., H2 generation from water splitting) and photovoltaics (e.g., dye-sensitized solar cells, DSSCs). As such, many efforts have focused on developing and exploiting cost-effective nanostructured TiO2 materials for efficient solar energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu J, Cao GZ, Yang ZG, Wang DH, Dubois D, Zhou XD, Graff GL, Pederson LR, Zhang JG (2008) ChemSusChem 1:676–697

    Google Scholar 

  2. Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663

    Google Scholar 

  3. Kamat PV (2007) J Phys Chem C 111:2834–2860

    Google Scholar 

  4. Nozik A, Miller J (2010) Chem Rev 110:6443–6445

    Google Scholar 

  5. Liu C, Burghaus U, Besenbacher F, Wang ZL (2010) ACS Nano 4:5517–5526

    Google Scholar 

  6. Serrano E, Rus G, García-Martínez J (2009) Renew Sustain Energy Rev 13:2373–2384

    Google Scholar 

  7. Beard MC, Ellingson RJ (2008) Laser Photonics Rev 2:377–399

    Google Scholar 

  8. Bisquert J, Cahen D, Hodes G, Ruhle S, Zaban A (2004) J Phys Chem B 108:8106–8118

    Google Scholar 

  9. Gratzel M (2001) Nature 414:338–344

    Google Scholar 

  10. Green MA (2001) Prog Photovoltaics Res Appl 9:123–135

    Google Scholar 

  11. El Chaar L, El Zein N (2011) Renew Sustain Energy Rev 15:2165–2175

    Google Scholar 

  12. Lewis NS (2007) Science 315:798–801

    Google Scholar 

  13. Gratzel M (2006) Prog Photovoltaics Res Appl 14:429–442

    Google Scholar 

  14. Oregan B, Gratzel M (1991) Nature 353:737–740

    Google Scholar 

  15. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Science 334:629–634

    Google Scholar 

  16. Grätzel M (2003) J Photochem Photobiol C 4:145–153

    Google Scholar 

  17. Toivola M, Halme J, Miettunen K, Aitola K, Lund PD (2009) Int J Energy Res 33:1145–1160

    Google Scholar 

  18. Halme J, Vahermaa P, Miettunen K, Lund P (2010) Adv Mater 22:E210–E234

    Google Scholar 

  19. O’Regan BC, Durrant JR (2009) Acc Chem Res 42:1799–1808

    Google Scholar 

  20. Chen XB (2009) Chin J Catal 30:839–851

    Google Scholar 

  21. Galinska A, Walendziewski J (2005) Energy Fuels 19:1143–1147

    Google Scholar 

  22. Yang XH, Li Z, Liu G, Xing J, Sun C, Yang HG, Li C (2010) CrystEngComm 13:1378–1383

    Google Scholar 

  23. Chen XB, Shen SH, Guo LJ, Mao SS (2010) Chem Rev 110:6503–6570

    Google Scholar 

  24. Fujishima A, Honda K (1972) Nature 238:37

    Google Scholar 

  25. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) Renew Sustain Energy Rev 11:401–425

    Google Scholar 

  26. Zhang QJ, Sun CH, Yan J, Hu XJ, Zhou SY, Chen P (2010) Solid State Sci 12:1274–1277

    Google Scholar 

  27. Lee JS (2005) Catal Surv Asia 9:217–227

    Google Scholar 

  28. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446

    Google Scholar 

  29. Ye M, Vennerberga D, Lin C, Lin Z (2012) J Nanosci Lett 2:1

    Google Scholar 

  30. Youngblood WJ, Lee SHA, Maeda K, Mallouk TE (2009) Acc Chem Res 42:1966–1973

    Google Scholar 

  31. Kaur A, Gupta U (2009) J Mater Chem 19:8279–8289

    Google Scholar 

  32. Akpan UG, Hameed BH (2009) J Hazard Mater 170:520–529

    Google Scholar 

  33. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’shea K (2012) Appl Catal B 125:331–349

    Google Scholar 

  34. Hu X, Li G, Yu JC (2009) Langmuir 26:3031–3039

    Google Scholar 

  35. Chen X, Mao SS (2007) Chem Rev 107:2891–2959

    Google Scholar 

  36. Lv M, Zheng D, Ye M, Sun L, Xiao J, Guo W, Lin C (2012) Nanoscale 4:5872–5879

    Google Scholar 

  37. Chou TP, Zhang QF, Russo B, Fryxell GE, Cao GZ (2007) J Phys Chem C 111:6296–6302

    Google Scholar 

  38. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:2011–2075

    Google Scholar 

  39. Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng XJ, Paulose M, Seabold JA, Choi KS, Grimes CA (2009) J Phys Chem C 113:6327–6359

    Google Scholar 

  40. Fei H, Yang Y, Rogow DL, Fan X, Oliver SRJ (2010) ACS Appl Mater Interfaces 2:974–979

    Google Scholar 

  41. Nozik AJ (2010) Nano Lett 10:2735–2741

    Google Scholar 

  42. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nat Mater 4:366–377

    Google Scholar 

  43. Guo YG, Hu JS, Wan LJ (2008) Adv Mater 20:2878–2887

    Google Scholar 

  44. Xin X, He M, Han W, Jung J, Lin Z (2011) Angew Chem Int Ed 50:11739–11742

    Google Scholar 

  45. Choi SK, Kim S, Lim SK, Park H (2010) J Phys Chem C 114:16475–16480

    Google Scholar 

  46. Xin X, Wang J, Han W, Ye M, Lin Z (2012) Nanoscale 4:964–969

    Google Scholar 

  47. Xin X, Scheiner M, Ye M, Lin Z (2011) Langmuir 27:14594–14598

    Google Scholar 

  48. Hartmann P, Lee DK, Smarsly BM, Janek J (2010) ACS Nano 4:3147–3154

    Google Scholar 

  49. Alivov Y, Fan ZY (2009) J Phys Chem C 113:12954–12957

    Google Scholar 

  50. Li Y, Fang XS, Koshizaki N, Sasaki T, Li L, Gao SY, Shimizu Y, Bando Y, Golberg D (2009) Adv Funct Mater 19:2467–2473

    Google Scholar 

  51. Kumar A, Madaria AR, Zhou CW (2010) J Phys Chem C 114:7787–7792

    Google Scholar 

  52. Albu SP, Roy P, Virtanen S, Schmuki P (2010) Isr J Chem 50:453–467

    Google Scholar 

  53. Yu JG, Fan JJ, Lv KL (2010) Nanoscale 2:2144–2149

    Google Scholar 

  54. Bleta R, Alphonse P, Lorenzato L (2010) J Phys Chem C 114:2039–2048

    Google Scholar 

  55. Isley SL, Penn RL (2008) J Phys Chem C 112:4469–4474

    Google Scholar 

  56. Liu JJ, Qin W, Zuo SL, Yu YC, Hao ZP (2009) J Hazard Mater 163:273–278

    Google Scholar 

  57. Wang J, Lin ZQ (2009) J Phys Chem C 113:4026–4030

    Google Scholar 

  58. Zhang W, Zhu R, Ke L, Liu XZ, Liu B, Ramakrishna S (2010) Small 6:2176–2182

    Google Scholar 

  59. Hwang D, Lee H, Jang SY, Jo SM, Kim D, Seo Y, Kim DY (2011) ACS Appl Mater Interfaces 3:2719–2725

    Google Scholar 

  60. Wu MS, Tsai CH, Wei TC (2011) Chem Commun 47:2871–2873

    Google Scholar 

  61. Bala H, Jiang L, Fu WY, Yuan GY, Wang XD, Liu ZR (2010) Appl Phys Lett 97:153108

    Google Scholar 

  62. Suprabha T, Roy HG, Thomas J, Kumar KP, Mathew S (2009) Nanoscale Res Lett 4:144–152

    Google Scholar 

  63. Melhem H, Simon P, Beouch L, Goubard F, Boucharef M, Di Bin C, Leconte Y, Ratier B, Herlin-Boime N, Bouclon J (2011) Adv Energy Mater 1:908–916

    Google Scholar 

  64. Pradhan SK, Reucroft PJ (2003) J Cryst Growth 250:588–594

    Google Scholar 

  65. Yu DH, Yu X, Wang C, Liu XC, Xing Y (2012) ACS Appl Mater Interfaces 4:2781–2787

    Google Scholar 

  66. Koo B, Park J, Kim Y, Choi SH, Sung YE, Hyeon T (2006) J Phys Chem B 110:24318–24323

    Google Scholar 

  67. Ahn SH, Chi WS, Park JT, Koh JK, Roh DK, Kim JH (2012) Adv Mater 24:519–522

    Google Scholar 

  68. Guldin S, Huttner S, Kolle M, Welland ME, Muller-Buschbaum P, Friend RH, Steiner U, Tétreault N (2010) Nano Lett 10:2303–2309

    Google Scholar 

  69. Halaoui LI, Abrams NM, Mallouk TE (2005) J Phys Chem B 109:6334–6342

    Google Scholar 

  70. Ismagilov ZR, Tsikoza LT, Shikina NV, Zarytova VF, Zinoviev VV, Zagrebelnyi SN (2009) Russ Chem Rev 78:873–885

    Google Scholar 

  71. Han S, Choi SH, Kim SS, Cho M, Jang B, Kim DY, Yoon J, Hyeon T (2005) Small 1:812–816

    Google Scholar 

  72. Jin WM, Shin JH, Cho CY, Kang JH, Park JH, Moon JH (2010) ACS Appl Mater Interfaces 2:2970–2973

    Google Scholar 

  73. Hatton B, Mishchenko L, Davis S, Sandhage KH, Aizenberg J (2010) PNAS 107:10354–10359

    Google Scholar 

  74. Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Angew Chem Int Ed 51:6886–6890

    Google Scholar 

  75. Ahn SH, Park JT, Koh JK, Roh DK, Kim JH (2011) Chem Commun 47:5882–5884

    Google Scholar 

  76. Agarwala S, Kevin M, Wong A, Peh C, Thavasi V, Ho G (2010) ACS Appl Mater Interfaces 2:1844–1850

    Google Scholar 

  77. Ismail AA, Bahnemann DW (2011) J Mater Chem 21:11686–11707

    Google Scholar 

  78. Park JT, Chi WS, Roh DK, Ahn SH, Kim JH (2012) Adv Funct Mater 23:26–33

    Google Scholar 

  79. Kim YJ, Lee YH, Lee MH, Kim HJ, Pan JH, Lim GI, Choi YS, Kim K, Park NG, Lee C (2008) Langmuir 24:13225–13230

    Google Scholar 

  80. Yang SC, Yang DJ, Kim J, Hong JM, Kim HG, Kim ID, Lee H (2008) Adv Mater 20:1059–1064

    Google Scholar 

  81. Mandlmeier B, Szeifert JM, Fattakhova-Rohlfing D, Amenitsch H, Bein T (2011) J Am Chem Soc 133:17274–17282

    Google Scholar 

  82. Xiong Z, Dou H, Pan J, Ma J, Xu C, Zhao X (2010) CrystEngComm 12:3455–3457

    Google Scholar 

  83. Sjöström T, McNamara LE, Yang L, Dalby M, Su B (2012) ACS Appl Mater Interfaces 4:6354–6361

    Google Scholar 

  84. Jang YH, Xin X, Byun M, Jang YJ, Lin Z, Kim DH (2011) Nano Lett 12:479–485

    Google Scholar 

  85. Hayward RC, Chmelka BF, Kramer EJ (2005) Adv Mater 17:2591–2595

    Google Scholar 

  86. Zhao D, Feng D, Luo W, Zhang J, Xu M, Zhang R, Wu H, Lv Y, Asiri AM, Rahman M (2013) J Mater Chem A 1:1591–1599

    Google Scholar 

  87. Cha MA, Shin C, Kannaiyan D, Jang YH, Kochuveedu ST, Kim DH (2009) J Mater Chem 19:7245–7250

    Google Scholar 

  88. Guldin S, Docampo P, Stefik M, Kamita G, Wiesner U, Snaith HJ, Steiner U (2012) Small 3:432–440

    Google Scholar 

  89. Chen Y, Kim HC, McVittie J, Ting C, Nishi Y (2010) Nanotechnology 21:185303

    Google Scholar 

  90. Ahmed S, Du Pasquier A, Birnie DP III, Asefa T (2011) ACS Appl Mater Interfaces 3:3002–3010

    Google Scholar 

  91. Dutta S, Patra AK, De S, Bhaumik A, Saha B (2012) ACS Appl Mater Interfaces 4:1560–1564

    Google Scholar 

  92. Kwak ES, Lee W, Park NG, Kim J, Lee H (2009) Adv Funct Mater 19:1093–1099

    Google Scholar 

  93. Mihi A, Zhang C, Braun PV (2011) Angew Chem Int Ed 123:5830–5833

    Google Scholar 

  94. Campbell M, Sharp D, Harrison M, Denning R, Turberfield A (2000) Nature 404:53–56

    Google Scholar 

  95. Nishimura S, Abrams N, Lewis BA, Halaoui LI, Mallouk TE, Benkstein KD, van de Lagemaat J, Frank AJ (2003) J Am Chem Soc 125:6306–6310

    Google Scholar 

  96. Lee SHA, Abrams NM, Hoertz PG, Barber GD, Halaoui LI, Mallouk TE (2008) J Phys Chem B 112:14415–14421

    Google Scholar 

  97. Shin JH, Moon JH (2011) Langmuir 27:6311–6315

    Google Scholar 

  98. Chang SY, Chen SF, Huang YC (2011) J Phys Chem C 115:1600–1607

    Google Scholar 

  99. Cho CY, Moon JH (2011) Adv Mater 23:2971–2975

    Google Scholar 

  100. Berrigan JD, McLachlan TM, Deneault JR, Cai Y, Kang TS, Durstock MF, Sandhage K (2013) J Mater Chem A 1:128–134

    Google Scholar 

  101. Xu C, Shin PH, Cao L, Wu J, Gao D (2009) Chem Mater 22:143–148

    Google Scholar 

  102. Shao W, Gu F, Gai L, Li C (2011) Chem Commun 47:5046–5048

    Google Scholar 

  103. Joo JB, Zhang Q, Lee I, Dahl M, Zaera F, Yin Y (2012) Adv Funct Mater 22:166–174

    Google Scholar 

  104. Thompson GE (1997) Thin Solid Films 297:192–201

    Google Scholar 

  105. Koh JH, Koh JK, Seo JA, Shin JS, Kim JH (2011) Nanotechnology 22:365401

    Google Scholar 

  106. Wang H (2012) CrystEngComm 14:6215–6220

    Google Scholar 

  107. Bian Z, Zhu J, Cao F, Huo Y, Lu Y, Li H (2010) Chem Commun 46:8451–8453

    Google Scholar 

  108. Tétreault N, Arsenault E, Heiniger LP, Soheilnia N, Brillet J, Moehl T, Zakeeruddin S, Ozin GA, Grätzel M (2011) Nano Lett 11:4579–4584

    Google Scholar 

  109. Liu L, Karuturi SK, Su LT, Tok AIY (2010) Energy Environ Sci 4:209–215

    Google Scholar 

  110. Tan LK, Liu X, Gao H (2011) J Mater Chem 21:11084–11087

    Google Scholar 

  111. Li L, Liu C (2009) J Phys Chem C 114:1444–1450

    Google Scholar 

  112. Yang W, Li J, Wang Y, Zhu F, Shi W, Wan F, Xu D (2011) Chem Commun 47:1809–1811

    Google Scholar 

  113. Yang H, Fang W, Yang X, Zhu H, Li Z, Zhao H, Yao X (2012) J Mater Chem 22:22082–22089

    Google Scholar 

  114. Wu B, Guo C, Zheng N, Xie Z, Stucky GD (2008) J Am Chem Soc 130:17563–17567

    Google Scholar 

  115. Yu J, Xiang Q, Ran J, Mann S (2010) CrystEngComm 12:872–879

    Google Scholar 

  116. Wang J, Bian Z, Zhu J, Li H (2013) J Mater Chem A 1:1296–1302

    Google Scholar 

  117. Jun Y, Casula MF, Sim JH, Kim SY, Cheon J, Alivisatos AP (2003) J Am Chem Soc 125:15981–15985

    Google Scholar 

  118. Wu D, Gao Z, Xu F, Chang J, Jiang K (2012) CrystEngComm 15:516–523

    Google Scholar 

  119. Nian JN, Teng HS (2006) J Phys Chem B 110:4193–4198

    Google Scholar 

  120. Horvath E, Kukovecz A, Konya Z, Kiricsi I (2007) Chem Mater 19:927–931

    Google Scholar 

  121. Guo WX, Xu C, Wang X, Wang SH, Pan CF, Lin CJ, Wang ZL (2012) J Am Chem Soc 134:4437–4441

    Google Scholar 

  122. Liu B, Aydil ES (2009) J Am Chem Soc 131:3985–3990

    Google Scholar 

  123. Chen D, Huang F, Cheng YB, Caruso RA (2009) Adv Mater 21:2206–2210

    Google Scholar 

  124. Liu M, Piao L, Lu W, Ju S, Zhao L, Zhou C, Li H, Wang W (2010) Nanoscale 2:1115–1117

    Google Scholar 

  125. Ye M, Liu HY, Lin C, Lin Z (2012) Small 9:312–321

    Google Scholar 

  126. Zhang D, Li G, Yang X, Jimmy CY (2009) Chem Commun 4381–4383

    Google Scholar 

  127. Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Jiang M, Wang P, Whangbo MH (2009) Chem Eur J 15:12576–12579

    Google Scholar 

  128. Diebold U (2003) Surf Sci Rep 48:53–229

    Google Scholar 

  129. Gong XQ, Selloni A (2005) J Phys Chem B 109:19560–19562

    Google Scholar 

  130. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Nature 453:638–641

    Google Scholar 

  131. Gu L, Wang J, Cheng H, Du Y, Han X (2012) Chem Commun 48:6978–6980

    Google Scholar 

  132. He Z, Cai Q, Hong F, Jiang Z, Chen J, Song S (2012) Ind Eng Chem Res 51:5662–5668

    Google Scholar 

  133. Xiang Q, Yu J, Jaroniec M (2011) Chem Commun 47:4532–4534

    Google Scholar 

  134. Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Jiang M, Wang P, Whangbo MH (2009) Chem Eur J 15:12576–12579

    Google Scholar 

  135. Zhang H, Han Y, Liu X, Liu P, Yu H, Zhang S, Yao X, Zhao H (2010) Chem Commun 46:8395–8397

    Google Scholar 

  136. Liu M, Piao L, Zhao L, Ju S, Yan Z, He T, Zhou C, Wang W (2010) Chem Commun 46:1664–1666

    Google Scholar 

  137. Li J, Cao K, Li Q, Xu D (2012) CrystEngComm 14:83–85

    Google Scholar 

  138. Li J, Xu D (2010) Chem Commun 46:2301–2303

    Google Scholar 

  139. Ma XY, Chen ZG, Hartono SB, Jiang HB, Zou J, Qiao SZ, Yang HG (2010) Chem Commun 46:6608–6610

    Google Scholar 

  140. Yu H, Tian B, Zhang J (2011) Chem Eur J 17:5499–5502

    Google Scholar 

  141. Kumar EN, Jose R, Archana P, Vijila C, Yusoff M, Ramakrishna S (2012) Energy Environ Sci 5:5401–5407

    Google Scholar 

  142. Liu B, Miao J (2012) RSC Adv 3:1222–1226

    Google Scholar 

  143. Dai Y, Cobley CM, Zeng J, Sun Y, Xia Y (2009) Nano Lett 9:2455–2459

    Google Scholar 

  144. Amano F, Prieto-Mahaney OO, Terada Y, Yasumoto T, Shibayama T, Ohtani B (2009) Chem Mater 21:2601–2603

    Google Scholar 

  145. Jung MH, Chu MJ, Kang MG (2012) Chem Commun 48:5016–5018

    Google Scholar 

  146. Xie S, Han X, Kuang Q, Fu J, Zhang L, Xie Z, Zheng L (2011) Chem Commun 47:6722–6724

    Google Scholar 

  147. Pan J, Wu X, Wang L, Liu G, Lu GQM, Cheng HM (2011) Chem Commun 47:8361–8363

    Google Scholar 

  148. Wang L, Zang L, Zhao J, Wang C (2012) Chem Commun 48:11736–11738

    Google Scholar 

  149. Li F, Xu J, Chen L, Ni B, Li X, Fu Z, Lu Y (2013) J Mater Chem A 1:225–228

    Google Scholar 

  150. Berger S, Hahn R, Roy P, Schmuki P (2010) Phys Status Solidi B 247:2424–2435

    Google Scholar 

  151. Peng XS, Wang JP, Thomas DF, Chen AC (2005) Nanotechnology 16:2389–2395

    Google Scholar 

  152. Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331–3334

    Google Scholar 

  153. Wu XJ, Zhu F, Mu C, Liang YQ, Xu LF, Chen QW, Chen RZ, Xu DS (2010) Coord Chem Rev 254:1135–1150

    Google Scholar 

  154. Peter LM, Jennings JR, Ghicov A, Schmuki P, Walker AB (2008) J Am Chem Soc 130:13364–13372

    Google Scholar 

  155. Xiao P, Zhang YH, Garcia BB, Sepehri S, Liu DW, Cao GZ (2009) J Nanosci Nanotechnol 9:2426–2436

    Google Scholar 

  156. Allam NK, El-Sayed MA (2010) J Phys Chem C 114:12024–12029

    Google Scholar 

  157. Lai Y, Sun L, Chen Y, Zhuang H, Lin C (2006) J Electrochem Soc 153:D123–D127

    Google Scholar 

  158. Gong JJ, Lai YK, Lin CJ (2010) Electrochim Acta 55:4776–4782

    Google Scholar 

  159. Gong JJ, Lin CJ, Ye MD, Lai YK (2011) Chem Commun 47:2598–2600

    Google Scholar 

  160. Guo WX, Xue XY, Wang SH, Lin CJ, Wang ZL (2012) Nano Lett 12:2520–2523

    Google Scholar 

  161. Rattanavoravipa T, Sagawa T, Yoshikawa S (2008) Sol Energy Mater Sol Cells 92:1445–1449

    Google Scholar 

  162. Wender H, Feil AF, Diaz LB, Ribeiro CS, Machado GJ, Migowski P, Weibel DE, Dupont J, Teixeira SR (2011) ACS Appl Mater Interfaces 3:1359–1365

    Google Scholar 

  163. Tan YF, Yang L, Chen JZ, Qiu Z (2010) Langmuir 26:10111–10114

    Google Scholar 

  164. Alivov Y, Pandikunta M, Nikishin S, Fan ZY (2009) Nanotechnology 20:225602

    Google Scholar 

  165. Bao NZ, Yoriya S, Grimes CA (2011) J Mater Chem 21:13909–13912

    Google Scholar 

  166. Wang J, Zhao L, Lin VSY, Lin ZQ (2009) J Mater Chem 19:3682–3687

    Google Scholar 

  167. Wang J, Lin Z (2012) Chem Asian J 7:2754–2762

    Google Scholar 

  168. Su ZX, Zhou WZ (2011) J Mater Chem 21:8955–8970

    Google Scholar 

  169. Roy P, Kim D, Lee K, Spiecker E, Schmuki P (2010) Nanoscale 2:45–59

    Google Scholar 

  170. Roy P, Berger S, Schmuki P (2011) Angew Chem Int Ed 50:2904–2939

    Google Scholar 

  171. Nah YC, Paramasivam I, Schmuki P (2010) ChemPhysChem 11:2698–2713

    Google Scholar 

  172. Schmuki P, Macak JM, Tsuchiya H, Taveira L, Aldabergerova S (2005) Angew Chem Int Ed 44:7463–7465

    Google Scholar 

  173. Grimes CA, Allam NK, Shankar K (2008) J Mater Chem 18:2341–2348

    Google Scholar 

  174. Schmuki P, Kim D, Ghicov A, Albu SP (2008) J Am Chem Soc 130:16454

    Google Scholar 

  175. Fei GT, Jin Z, Hu XY, Xu SH, De Zhang L (2009) Chem Lett 38:288–289

    Google Scholar 

  176. Lin J, Liu K, Chen XF (2011) Small 7:1784–1789

    Google Scholar 

  177. Xu XJ, Tang CC, Zeng HB, Zhai TY, Zhang SQ, Zhao HJ, Bando Y, Golberg D (2011) ACS Appl Mater Interfaces 3:1352–1358

    Google Scholar 

  178. Schmuki P, Albu SP, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson GE, Macak JM (2008) Adv Mater 20:4135

    Google Scholar 

  179. Li SQ, Zhang GM, Guo DZ, Yu LG, Zhang W (2009) J Phys Chem C 113:12759–12765

    Google Scholar 

  180. Stergiopoulos T, Ghicov A, Likodimos V, Tsoukleris DS, Kunze J, Schmuki P, Falaras P (2008) Nanotechnology 19:235602

    Google Scholar 

  181. Sun Y, Yan KP, Wang GX, Guo W, Ma TL (2011) J Phys Chem C 115:12844–12849

    Google Scholar 

  182. Biswas S, Shahjahan M, Hossain MF, Takahashi T (2010) Electrochem Commun 12:668–671

    Google Scholar 

  183. Chen CH, Chen KC, He JL (2010) Curr Appl Phys 10:S176–S179

    Google Scholar 

  184. Stergiopoulos T, Valota A, Likodimos V, Speliotis T, Niarchos D, Skeldon P, Thompson GE, Falaras P (2009) Nanotechnology 20:365601

    Google Scholar 

  185. Tang YX, Tao J, Tao HJ, Wu T, Wang L, Zhang YY, Li ZL, Tian XL (2008) Acta Phys Chim Sin 24:1120–1126

    Google Scholar 

  186. Leenheer AJ, Miedaner A, Curtis CJ, van Hest M, Ginley DS (2007) J Mater Res 22:681–687

    Google Scholar 

  187. Mor GK, Varghese OK, Paulose M, Grimes CA (2005) Adv Funct Mater 15:1291–1296

    Google Scholar 

  188. Varghese OK, Paulose M, Grimes CA (2009) Nat Nanotechnol 4:592–597

    Google Scholar 

  189. Sadek AZ, Zheng HD, Latham K, Wlodarski W, Kalantar-Zadeh K (2009) Langmuir 25:509–514

    Google Scholar 

  190. Wang DA, Yu B, Wang CW, Zhou F, Liu WM (2009) Adv Mater 21:1964–1967

    Google Scholar 

  191. Zhang G, Huang H, Zhang Y, Chan HLW, Zhou L (2007) Electrochem Commun 9:2854–2858

    Google Scholar 

  192. S. H. Kang, H. S. Kim, J. Y. Kim and Y. E. Sung, Nanotechnology, 2009, 20

    Google Scholar 

  193. Lei BX, Liao JY, Zhang R, Wang J, Su CY, Kuang DB (2010) J Phys Chem C 114:15228–15233

    Google Scholar 

  194. Lin J, Chen JF, Chen XF (2010) Electrochem Commun 12:1062–1065

    Google Scholar 

  195. Wang J, Lin ZQ (2008) Chem Mater 20:1257–1261

    Google Scholar 

  196. Ali G, Yoo SH, Kum JM, Kim YN, Cho SO (2011) Nanotechnology 22:245602

    Google Scholar 

  197. Wang J, Lin ZQ (2010) Chem Mater 22:579–584

    Google Scholar 

  198. Wang DA, Liu LF (2010) Chem Mater 22:6656–6664

    Google Scholar 

  199. Pang Q, Leng LM, Zhao LJ, Zhou LY, Liang CJ, Lan YW (2011) Mater Chem Phys 125:612–616

    Google Scholar 

  200. Wang DA, Liu LF, Zhang FX, Tao K, Pippel E, Domen K (2011) Nano Lett 11:3649–3655

    Google Scholar 

  201. Wang J, Lin ZQ (2008) Chem Mater 20:1257–1261

    Google Scholar 

  202. Lin CJ, Yu WY, Chien SH (2010) J Mater Chem 20:1073–1077

    Google Scholar 

  203. Wang YH, Yang HX, Liu Y, Wang H, Shen H, Yan J, Xu HM (2010) Prog Photovoltaics 18:285–290

    Google Scholar 

  204. Wang YH, Yang HX, Lu L (2010) J Appl Phys 108:064510

    Google Scholar 

  205. Liu ZY, Misra M (2010) ACS Nano 4:2196–2200

    Google Scholar 

  206. Zou DC, Wang D, Chu ZZ, Lv ZB, Fan X (2010) Coord Chem Rev 254:1169–1178

    Google Scholar 

  207. Liu Y, Wang H, Li M, Hong RJ, Ye QH, Zheng JM, Shen H (2009) Appl Phys Lett 95:233505

    Google Scholar 

  208. Liu Y, Li M, Wang H, Zheng JM, Xu HM, Ye QH, Shen H (2010) J Phys D Appl Phys 43:205103

    Google Scholar 

  209. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215–218

    Google Scholar 

  210. Hu A, Li H, Jia Z, Xia Z (2011) J Solid State Chem 184:2936–2940

    Google Scholar 

  211. Hu A, Xiao L, Dai G, Xia Z (2012) J Solid State Chem 190:130–134

    Google Scholar 

  212. Ye MD, Xin XK, Lin CJ, Lin ZQ (2011) Nano Lett 11:3214–3220

    Google Scholar 

  213. Chen CC, Chung HW, Chen CH, Lu HP, Lan CM, Chen SF, Luo L, Hung CS, Diau EWG (2008) J Phys Chem C 112:19151–19157

    Google Scholar 

  214. Shang M, Wang W, Yin W, Ren J, Sun S, Zhang L (2010) Chem Eur J 16:11412–11419

    Google Scholar 

  215. Ding B, Kim H, Kim C, Khil M, Park S (2003) Nanotechnology 14:532

    Google Scholar 

  216. Li D, Wang Y, Xia Y (2003) Nano Lett 3:1167–1171

    Google Scholar 

  217. Reneker DH, Chun I (1999) Nanotechnology 7:216

    Google Scholar 

  218. Song MY, Ihn KJ, Jo SM, Kim DY (1861) Nanotechnology 2004:15

    Google Scholar 

  219. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223–2253

    Google Scholar 

  220. Choi SW, Park JY, Kim SS (2009) Nanotechnology 20:465603

    Google Scholar 

  221. Li D, Xia Y (2003) Nano Lett 3:555–560

    Google Scholar 

  222. Nair AS, Zhu P, Jagadeesh Babu V, Yang S, Krishnamoorthy T, Murugan R, Peng S, Ramakrishna S (2012) Langmuir 28:6202–6206

    Google Scholar 

  223. Wu MC, Sápi A, Avila A, Szabó M, Hiltunen J, Huuhtanen M, Tóth G, Kukovecz Á, Kónya Z, Keiski R (2011) Nano Research 4:360–369

    Google Scholar 

  224. Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Chem Mater 19:6536–6542

    Google Scholar 

  225. Yang L, Leung WWF (2011) Adv Mater 23:4559–4562

    Google Scholar 

  226. Hwang SH, Kim C, Song H, Son S, Jang J (2012) ACS Appl Mater Interfaces 4:5287–5292

    Google Scholar 

  227. Jose R, Kumar A, Thavasi V, Ramakrishna S (2008) Nanotechnology 19:424004

    Google Scholar 

  228. Zhu P, Nair AS, Yang S, Peng S, Ramakrishna S (2011) J Mater Chem 21:12210–12212

    Google Scholar 

  229. Zhan S, Chen D, Jiao X, Tao C (2006) J Phys Chem B 110:11199–11204

    Google Scholar 

  230. Lee BH, Song MY, Jang SY, Jo SM, Kwak SY, Kim DY (2009) J Phys Chem C 113:21453–21457

    Google Scholar 

  231. Nair AS, Shengyuan Y, Peining Z, Ramakrishna S (2010) Chem Commun 46:7421–7423

    Google Scholar 

  232. Shengyuan Y, Peining Z, Nair AS, Ramakrishna S (2011) J Mater Chem 21:6541–6548

    Google Scholar 

  233. Hwang D, Jo SM, Kim DY, Armel V, MacFarlane DR, Jang SY (2011) ACS Appl Mater Interfaces 3:1521–1527

    Google Scholar 

  234. Ishida M, Park SW, Hwang D, Koo YB, Sessler JL, Kim DY, Kim D (2011) J Phys Chem C 115:19343–19354

    Google Scholar 

  235. Chen X, Liu L, Peter YY, Mao SS (2011) Science 331:746–750

    Google Scholar 

  236. An HL, Ahn HJ (2012) Mater Lett 81:41–44

    Google Scholar 

  237. Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S (2007) Nanotechnology 18:365709

    Google Scholar 

  238. Liu B, Nakata K, Sakai M, Saito H, Ochiai T, Murakami T, Takagi K, Fujishima A (2012) Catal Sci Technol 2:1933–1939

    Google Scholar 

  239. Hwang D, Lee H, Seo Y, Kim D, Jo SM, Kim DY (2013) J Mater Chem A 1:1359–1367

    Google Scholar 

  240. Lee H, Hwang D, Jo SM, Kim D, Seo Y, Kim DY (2012) ACS Appl Mater Interfaces 4:3308–3315

    Google Scholar 

  241. Jang SY, Hwang D, Kim DY, Kim D (2013) J Mater Chem A 1:1228–1238

    Google Scholar 

  242. Yang HY, Lee MF, Huang CH, Lo YS, Chen YJ, Wong MS (2009) Thin Solid Films 518:1590–1594

    Google Scholar 

  243. Wolcott A, Smith WA, Kuykendall TR, Zhao Y, Zhang JZ (2008) Small 5:104–111

    Google Scholar 

  244. Larsen GK, Fitzmorris R, Zhang JZ, Zhao Y (2011) J Phys Chem C 115:16892–16903

    Google Scholar 

  245. Smith W, Wolcott A, Fitzmorris RC, Zhang JZ, Zhao Y (2011) J Mater Chem 21:10792–10800

    Google Scholar 

  246. Wang S, Xia G, He H, Yi K, Shao J, Fan Z (2007) J Alloy Compd 431:287–291

    Google Scholar 

  247. Pihosh Y, Turkevych I, Ye J, Goto M, Kasahara A, Kondo M, Tosa M (2009) J Electrochem Soc 156:K160–K165

    Google Scholar 

  248. Gamez F, Plaza-Reyes A, Hurtado P, Guillen F, Anta JA, Martinez-Haya B, Perez S, Sanz M, Castillejo M, Izquierdo JG, Banares L (2010) J Phys Chem C 114:17409–17415

    Google Scholar 

  249. Sanz M, Walczak M, de Nalda R, Oujja M, Marco JF, Rodriguez J, Izquierdo JG, Banares L, Castillejo M (2009) Appl Surf Sci 255:5206–5210

    Google Scholar 

  250. Sanz M, Walczak M, Oujja M, Cuesta A, Castillejo M (2009) Thin Solid Films 517:6546–6552

    Google Scholar 

  251. Yang XF, Zhuang JL, Li XY, Chen DH, Ouyang GF, Mao ZQ, Han YX, He ZH, Liang CL, Wu MM, Yu JC (2009) ACS Nano 3:1212–1218

    Google Scholar 

  252. Quinonez C, Vallejo W, Gordillo G (2010) Appl Surf Sci 256:4065–4071

    Google Scholar 

  253. Shan AY, Ghazi TIM, Rashid SA (2010) Appl Catal A 389:1–8

    Google Scholar 

  254. Seifried S, Winterer M, Hahn H (2000) Chem Vap Deposition 6:239–244

    Google Scholar 

  255. Zhang C, Chen S, Mo L, Huang Y, Tian H, Hu L, Huo Z, Dai S, Kong F, Pan X (2011) J Phys Chem C 115:16418–16424

    Google Scholar 

  256. Xu L, Steinmiller EMP, Skrabalak SE (2011) J Phys Chem C 116:871–877

    Google Scholar 

  257. Yu H, Irie H, Shimodaira Y, Hosogi Y, Kuroda Y, Miyauchi M, Hashimoto K (2010) J Phys Chem C 114:16481–16487

    Google Scholar 

  258. Zhu J, Ren J, Huo Y, Bian Z, Li H (2007) J Phys Chem C 111:18965–18969

    Google Scholar 

  259. Wu Q, Ouyang JJ, Xiea KP, Sun L, Wang MY, Lin CJ (2012) J Hazard Mater 199:410–417

    Google Scholar 

  260. Di Paola A, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B (2002) J Phys Chem B 106:637–645

    Google Scholar 

  261. Huang JH, Hung PY, Hu SF, Liu RS (2010) J Mater Chem 20:6505–6511

    Google Scholar 

  262. Liqiang J, Xiaojun S, Baifu X, Baiqi W, Weimin C, Honggang F (2004) J Solid State Chem 177:3375–3382

    Google Scholar 

  263. Liu Z, Li Y, Liu C, Ya J (2011) L. E., W. Zhao, D. Zhao and L. An. ACS Appl Mater Interfaces 3:1721–1725

    Google Scholar 

  264. Wang E, Yang W, Cao Y (2009) J Phys Chem C 113:20912–20917

    Google Scholar 

  265. Li H, Zhang X, Huo Y, Zhu J (2007) Environ Sci Technol 41:4410–4414

    Google Scholar 

  266. Wu G, Nishikawa T, Ohtani B, Chen A (2007) Chem Mater 19:4530–4537

    Google Scholar 

  267. Song J, Yang HB, Wang X, Khoo SY, Wong C, Liu XW, Li CM (2012) ACS Appl Mater Interfaces 4:3712–3717

    Google Scholar 

  268. Liu G, Yin LC, Wang J, Niu P, Zhen C, Xie Y, Cheng HM (2012) Energy Environ Sci 5:9603–9610

    Google Scholar 

  269. Zhao Y, Qiu X, Burda C (2008) Chem Mater 20:2629–2636

    Google Scholar 

  270. Peng T, Dai K, Yi H, Ke D, Cai P, Zan L (2008) Chem Phys Lett 460:216–219

    Google Scholar 

  271. Liao G, Chen S, Quan X, Chen H, Zhang Y (2010) Environ Sci Technol 44:3481–3485

    Google Scholar 

  272. Park J, Yi J, Tachikawa T, Majima T, Choi W (2010) J Phys Chem Lett 1:1351–1355

    Google Scholar 

  273. Park H, Choi W (2005) J Phys Chem B 109:11667–11674

    Google Scholar 

  274. Zhang H, Zong R, Zhao J, Zhu Y (2008) Environ Sci Technol 42:3803–3807

    Google Scholar 

  275. Zhou X, Peng F, Wang H, Yu H, Fang Y (2011) Chem Commun 47:10323–10325

    Google Scholar 

  276. Zhang M, Shao C, Guo Z, Zhang Z, Mu J, Cao T, Liu Y (2011) ACS Appl Mater Interfaces 3:369–377

    Google Scholar 

  277. Wang H, Bai Y, Zhang H, Zhang Z, Li J, Guo L (2010) J Phys Chem C 114:16451–16455

    Google Scholar 

  278. Zhu G, Pan L, Xu T, Sun Z (2011) ACS Appl Mater Interfaces 3:1472–1478

    Google Scholar 

  279. Wang CL, Sun L, Yun H, Li J, Lai YK, Lin CJ (2009) Nanotechnology 20:295601

    Google Scholar 

  280. Hou Y, Li X, Zou X, Quan X, Chen G (2008) Environ Sci Technol 43:858–863

    Google Scholar 

  281. Zhou W, Liu H, Wang J, Liu D, Du G, Cui J (2010) ACS Appl Mater Interfaces 2:2385–2392

    Google Scholar 

  282. Kim JY, Choi SB, Noh JH, Yoon SH, Lee S, Noh TH, Frank AJ, Hong KS (2009) Langmuir 25:5348–5351

    Google Scholar 

  283. Huang H, Li D, Lin Q, Shao Y, Chen W, Hu Y, Chen Y, Fu X (2009) J Phys Chem C 113:14264–14269

    Google Scholar 

  284. Murakami N, Kurihara Y, Tsubota T, Ohno T (2009) J Phys Chem C 113:3062–3069

    Google Scholar 

  285. Zhang X, Zhang L, Xie T, Wang D (2009) J Phys Chem C 113:7371–7378

    Google Scholar 

  286. Colón G, López SM, Hidalgo M, Navío J (2010) Chem Commun 46:4809–4811

    Google Scholar 

  287. Gao XF, Li HB, Sun WT, Chen Q, Tang FQ, Peng LM (2009) J Phys Chem C 113:7531–7535

    Google Scholar 

  288. Lee HJ, Leventis HC, Moon SJ, Chen P, Ito S, Haque SA, Torres T, Nüesch F, Geiger T, Zakeeruddin SM (2009) Adv Funct Mater 19:2735–2742

    Google Scholar 

  289. O’Hayre R, Nanu M, Schoonman J, Goossens A, Wang Q, Grätzel M (2006) Adv Funct Mater 16:1566–1576

    Google Scholar 

  290. Wang Y, Gong H, Fan B, Hu G (2010) J Phys Chem C 114:3256–3259

    Google Scholar 

  291. Zhang Z, Shao C, Li X, Sun Y, Zhang M, Mu J, Zhang P, Guo Z, Liu Y (2012) Nanoscale 5:606–618

    Google Scholar 

  292. Pandikumar A, Murugesan S, Ramaraj R (2010) ACS Appl Mater Interfaces 2:1912–1917

    Google Scholar 

  293. Z. Bian, J. Zhu, F. Cao, Y. Lu and H. Li, Chem. Commun., 2009, 3789-3791

    Google Scholar 

  294. Seh ZW, Liu S, Low M, Zhang SY, Liu Z, Mlayah A, Han MY (2012) Adv Mater 24:2310–2314

    Google Scholar 

  295. Lee SS, Oh K (2012) ACS Appl Mater Interfaces 4:5727–5731

    Google Scholar 

  296. Xie KP, Wu Q, Wang YY, Guo WX, Wang MY, Sun L, Lin CJ (2011) Electrochem Commun 13:1469–1472

    Google Scholar 

  297. Xie KP, Sun L, Wang CL, Lai YK, Wang MY, Chen HB, Lin CJ (2010) Electrochim Acta 55:7211–7218

    Google Scholar 

  298. Mohapatra SK, Kondamudi N, Banerjee S, Misra M (2008) Langmuir 24:11276–11281

    Google Scholar 

  299. Zhang N, Liu S, Fu X, Xu YJ (2011) J Phys Chem C 115:9136–9145

    Google Scholar 

  300. Ye M, Gong J, Lai Y, Lin C, Lin Z (2012) J Am Chem Soc 134:15720–15723

    Google Scholar 

  301. Wang C, Yin L, Zhang L, Liu N, Lun N, Qi Y (2010) ACS Appl Mater Interfaces 2:3373–3377

    Google Scholar 

  302. Chen YC, Pu YC, Hsu YJ (2012) J Phys Chem C 116:2967–2975

    Google Scholar 

  303. Lai YK, Gong JJ, Lin CJ (2012) Int J Hydrogen Energy 37:6438–6446

    Google Scholar 

  304. Yu Y, Zhang MZ, Chen J, Zhao YD (2012) Dalton Trans 42:885–889

    Google Scholar 

  305. Bai H, Liu Z, Sun DD (2012) J Am Ceram Soc 96:942–949

    Google Scholar 

  306. Smitha VS, Baiju KV, Perumal P, Ghosh S, Warrier KG (2012) Eur J Inorg Chem 2012:226–233

    Google Scholar 

  307. K. M. Shrestha, C. M. Sorensen and K. J. Klabundea, J. Mater. Res., 1, 1-9

    Google Scholar 

  308. Lü X, Huang F, Wu J, Ding S, Xu F (2011) ACS Appl Mater Interfaces 3:566–572

    Google Scholar 

  309. Diamant Y, Chen S, Melamed O, Zaban A (2003) J Phys Chem B 107:1977–1981

    Google Scholar 

  310. Furukawa S, Shishido T, Teramura K, Tanaka T (2011) ACS Catalysis 2:175–179

    Google Scholar 

  311. Pan J, Hühne SM, Shen H, Xiao L, Born P, Mader W, Mathur S (2011) J Phys Chem C 115:17265–17269

    Google Scholar 

  312. Song KY, Park MK, Kwon YT, Lee HW, Chung WJ, Lee WI (2001) Chem Mater 13:2349–2355

    Google Scholar 

  313. Sun L, Bu JF, Guo WX, Wang YY, Wang MY, Lin CJ (2012) Electrochem Solid-State Lett 15:E1–E3

    Google Scholar 

  314. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) J Phys Chem B 108:4818–4822

    Google Scholar 

  315. Jiang X, Zhang Y, Jiang J, Rong Y, Wang Y, Wu Y, Pan CX (2012) J Phys Chem C 116:22619–22624

    Google Scholar 

  316. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Dal V (2012) Santo. J Am Chem Soc 134:7600–7603

    Google Scholar 

  317. Tominaka S, Tsujimoto Y, Matsushita Y, Yamaura K (2011) Angew Chem Int Ed 50:7418–7421

    Google Scholar 

  318. Zuo F, Bozhilov K, Dillon RJ, Wang L, Smith P, Zhao X, Bardeen C, Feng P (2012) Angew Chem Int Ed 124:6327–6330

    Google Scholar 

  319. Gu D, Lu Y, Yang B (2008) Chem Commun 2453–2455

    Google Scholar 

  320. Sayed FN, Jayakumar O, Sasikala R, Kadam R, Bharadwaj SR, Kienle L, Schürmann U, Kaps S, Adelung R, Mittal J (2012) J Phys Chem C 116:12462–12467

    Google Scholar 

  321. Kitano M, Funatsu K, Matsuoka M, Ueshima M, Anpo M (2006) J Phys Chem B 110:25266–25272

    Google Scholar 

  322. Gu DE, Yang BC, Hu YD (2008) Catal Commun 9:1472–1476

    Google Scholar 

  323. Wang CL, Wang MY, Xie KP, Wu Q, Sun L, Lin ZQ, Lin CJ (2011) Nanotechnology 22:305607

    Google Scholar 

  324. Sato S (1986) Chem Phys Lett 123:126–128

    Google Scholar 

  325. Sato S, Nakamura R, Abe S (2005) Appl Catal A 284:131–137

    Google Scholar 

  326. Lai YK, Huang JY, Zhang HF, Subramaniam VP, Tang YX, Gong DG, Sundar L, Sun L, Chen Z, Lin CJ (2010) J Hazard Mater 184:855–863

    Google Scholar 

  327. Cao J, Zhang Y, Tong H, Li P, Kako T, Ye J (2012) Chem Commun 48:8649–8651

    Google Scholar 

  328. Bacsa R, Kiwi J, Ohno T, Albers P, Nadtochenko V (2005) J Phys Chem B 109:5994–6003

    Google Scholar 

  329. Li Y, Ma G, Peng S, Lu G, Li S (2008) Appl Surf Sci 254:6831–6836

    Google Scholar 

  330. Chen D, Jiang Z, Geng J, Wang Q, Yang D (2007) Ind Eng Chem Res 46:2741–2746

    Google Scholar 

  331. Chen X, Burda C (2008) J Am Chem Soc 130:5018–5019

    Google Scholar 

  332. Dong F, Wang H, Wu Z (2009) J Phys Chem C 113:16717–16723

    Google Scholar 

  333. Sun H, Liu H, Ma J, Wang X, Wang B, Han L (2008) J Hazard Mater 156:552–559

    Google Scholar 

  334. Wu G, Wang J, Thomas DF, Chen A (2008) Langmuir 24:3503–3509

    Google Scholar 

  335. Dong F, Guo S, Wang H, Li X, Wu Z (2011) J Phys Chem C 115:13285–13292

    Google Scholar 

  336. Wei F, Ni L, Cui P (2008) J Hazard Mater 156:135–140

    Google Scholar 

  337. In S, Orlov A, Berg R, García F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) J Am Chem Soc 129:13790–13791

    Google Scholar 

  338. Zong X, Xing Z, Yu H, Chen Z, Tang F, Zou J, Lu GQ, Wang L (2011) Chem Commun 47:11742–11744

    Google Scholar 

  339. Li L, Shi J, Li G, Yuan Y, Li Y, Zhao W (2013) New J Chem 37:451–457

    Google Scholar 

  340. Santos RS, Faria GA, Giles C, Leite CAP, Barbosa HS, Arruda MAZ, Longo C (2012) ACS Appl Mater Interfaces 4:5555–5561

    Google Scholar 

  341. Liu X, Geng D, Wang X, Ma S, Wang H, Li D, Li B, Liu W, Zhang Z (2010) Chem Commun 46:6956–6958

    Google Scholar 

  342. Cao G, Li Y, Zhang Q, Wang H (2010) J Am Ceram Soc 93:1252–1255

    Google Scholar 

  343. Zhang J, Pan C, Fang P, Wei J, Xiong R (2010) ACS Appl Mater Interfaces 2:1173–1176

    Google Scholar 

  344. Dai G, Yu J, Liu G (2011) J Phys Chem C 115:7339–7346

    Google Scholar 

  345. Wang Y, Zhang Y, Zhao G, Tian H, Shi H, Zhou T (2012) ACS Appl Mater Interfaces 4:3965–3972

    Google Scholar 

  346. Vogel R, Hoyer P, Weller H (1994) J Phys Chem 98:3183–3188

    Google Scholar 

  347. Kim W, Tachikawa T, Majima T, Choi W (2009) J Phys Chem C 113:10603–10609

    Google Scholar 

  348. D. Zhang, G. Li, X. Yang and C. Y. Jimmy, Chem. Commun., 2009, 0, 4381-4383

    Google Scholar 

  349. Peng L, Xie T, Lu Y, Fan H, Wang D (2010) Phys Chem Chem Phys 12:8033–8041

    Google Scholar 

  350. Wang C, Shao C, Zhang X, Liu Y (2009) Inorg Chem 48:7261–7268

    Google Scholar 

  351. Anderson C, Bard AJ (1997) J Phys Chem B 101:2611–2616

    Google Scholar 

  352. William L IV, Kostedt I, Ismail AA, Mazyck DW (2008) Ind Eng Chem Res 47:1483–1487

    Google Scholar 

  353. Fu X, Clark LA, Yang Q, Anderson MA (1996) Environ Sci Technol 30:647–653

    Google Scholar 

  354. Ding S, Yin X, Lü X, Wang Y, Huang F, Wan D (2011) ACS Appl Mater Interfaces 4:306–311

    Google Scholar 

  355. Shao Z, Zhu W, Li Z, Yang Q, Wang G (2012) J Phys Chem C 116:2438–2442

    Google Scholar 

  356. Kang Q, Liu S, Yang L, Cai Q, Grimes CA (2011) ACS Appl Mater Interfaces 3:746–749

    Google Scholar 

  357. Liu B, Wang D, Zhang Y, Fan H, Lin Y, Jiang T, Xie T (2012) Dalton Trans 42:2232–2237

    Google Scholar 

  358. Wang S, Zhang X, Zhou G, Wang ZS (2012) Phys Chem Chem Phys 14:816–822

    Google Scholar 

  359. Kim JY, Kang SH, Kim HS, Sung YE (2009) Langmuir 26:2864–2870

    Google Scholar 

  360. Yu H, Xue B, Liu P, Qiu J, Wen W, Zhang S, Zhao H (2012) ACS Appl Mater Interfaces 4:1289–1294

    Google Scholar 

  361. Jung HS, Lee JK, Nastasi M, Lee SW, Kim JY, Park JS, Hong KS, Shin H (2005) Langmuir 21:10332–10335

    Google Scholar 

  362. Shinde DV, Mane RS, Oh IH, Lee JK, Han SH (2012) Dalton Trans 41:10161–10163

    Google Scholar 

  363. Pang S, Xie T, Zhang Y, Wei X, Yang M, Wang D, Du Z (2007) J Phys Chem C 111:18417–18422

    Google Scholar 

  364. Cao T, Li Y, Wang C, Zhang Z, Zhang M, Shao C, Liu Y (2011) J Mater Chem 21:6922–6927

    Google Scholar 

  365. Li X, Hou Y, Zhao Q, Chen G (2011) Langmuir 27:3113–3120

    Google Scholar 

  366. Muduli S, Lee W, Dhas V, Mujawar S, Dubey M, Vijayamohanan K, Han SH, Ogale S (2009) ACS Appl Mater Interfaces 1:2030–2035

    Google Scholar 

  367. Liu B, Huang Y, Wen Y, Du L, Zeng W, Shi Y, Zhang F, Zhu G, Xu X, Wang Y (2012) J Mater Chem 22:7484–7491

    Google Scholar 

  368. Kim H, Moon G, Monllor-Satoca D, Park Y, Choi W (2011) J Phys Chem C 116:1535–1543

    Google Scholar 

  369. Zhang H, Lv X, Li Y, Wang Y, Li J (2009) ACS Nano 4:380–386

    Google Scholar 

  370. Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Adv Funct Mater 20:4175–4181

    Google Scholar 

  371. Hou C, Zhang Q, Li Y, Wang H (2012) J Hazard Mater 205:229–235

    Google Scholar 

  372. Wojtoniszak M, Zielinska B, Chen X, Kalenczuk RJ, Borowiak-Palen E (2012) J Mater Sci 47:3185–3190

    Google Scholar 

  373. Yang N, Zhang Y, Halpert JE, Zhai J, Wang D, Jiang L (2012) Small 11:1762–1770

    Google Scholar 

  374. Lee JS, You KH, Park CB (2012) Adv Mater 24:1084–1088

    Google Scholar 

  375. Cottineau T, Albrecht A, Janowska I, Macher N, Bégin D, Ledoux MJ, Pronkin S, Savinova E, Keller N, Keller V (2012) Chem Commun 48:1224–1226

    Google Scholar 

  376. Kim IY, Lee JM, Kim TW, Kim HN, Kim H, Choi W, Hwang SJ (2012) Small 7:1038–1048

    Google Scholar 

  377. Peining Z, Nair AS, Shengjie P, Shengyuan Y, Ramakrishna S (2012) ACS Appl Mater Interfaces 4:581–585

    Google Scholar 

  378. Zhang XY, Li HP, Cui XL, Lin Y (2010) J Mater Chem 20:2801–2806

    Google Scholar 

  379. Liu S, Liu C, Wang W, Cheng B, Yu J (2012) Nanoscale 4:3193–3200

    Google Scholar 

  380. Tu W, Zhou Y, Liu Q, Tian Z, Gao J, Chen X, Zhang H, Liu J, Zou Z (2012) Adv Funct Mater 22:1215–1221

    Google Scholar 

  381. Sun L, Zhao Z, Zhou Y, Liu L (2012) Nanoscale 4:613–620

    Google Scholar 

  382. Sher Shah MSA, Park AR, Zhang K, Park JH, Yoo PJ (2012) ACS Appl Mater Interfaces 4:3893–3901

    Google Scholar 

  383. Zhang X, Sun Y, Cui X, Jiang Z (2012) Int J Hydrogen Energy 37:811–815

    Google Scholar 

  384. Jiang B, Tian C, Pan Q, Jiang Z, Wang JQ, Yan W, Fu H (2011) J Phys Chem C 115:23718–23725

    Google Scholar 

  385. Libisch F, Stampfer C, Burgdörfer J (2009) Phys Rev B 79:115423

    Google Scholar 

  386. Ritter KA, Lyding JW (2009) Nat Mater 8:235–242

    Google Scholar 

  387. Ponomarenko L, Schedin F, Katsnelson M, Yang R, Hill E, Novoselov K, Geim A (2008) Science 320:356–358

    Google Scholar 

  388. Zhuo S, Shao M, Lee ST (2012) ACS Nano 6:1059–1064

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changjian Lin or Zhiqun Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Ye, M., Lv, M., Chen, C., Iocozzia, J., Lin, C., Lin, Z. (2014). Design, Fabrication, and Modification of Cost-Effective Nanostructured TiO2 for Solar Energy Applications. In: Lin, Z., Wang, J. (eds) Low-cost Nanomaterials. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6473-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6473-9_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6472-2

  • Online ISBN: 978-1-4471-6473-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics