Low-Cost Nanomaterials for High-Performance Polymer Electrolyte Fuel Cells (PEMFCs)

  • S. M. Senthil Kumar
  • Vijayamohanan K. Pillai
Part of the Green Energy and Technology book series (GREEN)


Production, storage and deployment of affordable and clean energy is one of the biggest challenges facing humanity. Although a majority of current energy requirements is obtained from fossil fuels, the supply is finite and could last only for a specified period depending on the nature of resources.


Fuel Cell Polymer Electrolyte Oxygen Reduction Reaction Proton Conductivity Composite Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors appreciate the financial support from Government of India, through CSIR NMITLI, and NWP0022 and from DST as research fellowships. The authors also thank all NMITLI team members from CSIR-NCL, CSIR-NPL and CSIR-CECRI (Chennai Unit) for their valuable contributions. We thank Dr. Sivaram for his constant support and useful discussions.


  1. 1.
    Karunadasa HI, Chang CJ, Long JR (2010) Nature 464:1329Google Scholar
  2. 2.
    Tollefson J (2010) Nature 464:1262Google Scholar
  3. 3.
    Lewis NS, Nocera DG (2006) Proc Natl Acad Sci USA 103:15729Google Scholar
  4. 4.
    Dresselhaus MS, Thomas IL (2001) Nature 414:332Google Scholar
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    Pagliaro M, Palmisano G, Cirminna R (2008) Flexible solar cells. Wiley VCH, WeinheimGoogle Scholar
  10. 10.
    Das BK (1985) Photovoltaic materials and devices. Wiley Eastern Ltd, New DelhiGoogle Scholar
  11. 11.
    Zhao TS, Kreuer KD, Nguyen TV (2007) Advances in fuel cells, vol 1. Elsevier, Oxford (Chapter 1)Google Scholar
  12. 12.
  13. 13.
  14. 14.
  15. 15.
    Smedley SI, Zhang XG (2007) J Power Sources 165:897Google Scholar
  16. 16.
    Sapkota P, Kim H (2010) J Ind Eng Chem 16:39Google Scholar
  17. 17.
    Viswanathan B, Scibioh MA (2006) Fuel cells: principles and applications. University Press, New DelhiGoogle Scholar
  18. 18.
    Steele BCH, Heinzel A (2001) Nature 414:345Google Scholar
  19. 19.
    Mallouk TE (1990) Nature 343:515Google Scholar
  20. 20.
    Schlapbach L (2009) Nature 460:809Google Scholar
  21. 21.
    Kunze J, Stimming U (2009) Angew Chem Int Ed 48:9230Google Scholar
  22. 22.
    Metha V, Cooper JS (2003) J Power Sources 114:32Google Scholar
  23. 23.
    Gsmburzev S, Appleby AJ (2002) J Power Sources 107:5Google Scholar
  24. 24.
    Mock P, Schmid SA (2009) J Power Sources 190:133Google Scholar
  25. 25.
    Kjelstrup S, Coppens MO, Pharoah JG, Pfeifer P (2010) Energy Fuels 24:5097Google Scholar
  26. 26.
  27. 27.
    Wang X, Li W, Chen Z, Waje M, Yan Y (2006) J Power Sources 158:154Google Scholar
  28. 28.
    Rotello VM (2004) Nanoparticles: building blocks for nanotechnology. Springer Science and Business Media, Inc., New York, 2004Google Scholar
  29. 29.
    Heiz U, Landman U (2007) Nanocatalysis. Springer Science and Business Media, Inc., New YorkGoogle Scholar
  30. 30.
    Jensen BW, Jensen OW, Forsyth M, MacFarlance DR (2008) Science 321:671Google Scholar
  31. 31.
    Wu G, More KL, Johnston CM, Zelenay P (2011) Science 332:443Google Scholar
  32. 32.
    Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Mullen K (2012) J Am Chem Soc 134:9082Google Scholar
  33. 33.
  34. 34.
    Jenses BW, Jensen OW, Forsyth M, McFarlane DB (2008) Science 321:671Google Scholar
  35. 35.
    Litster S, McLean G (2004) J Power Sources 130:61Google Scholar
  36. 36.
    Auer E, Freund A, Pietsch J, Tacke T (1998) Appl Catal A 173:259Google Scholar
  37. 37.
    Yuan D, Xu C, Liu Y, Tan S, Wang X, Wei Z, Shen PK (2007) Electrochem Comm 9:2473Google Scholar
  38. 38.
    Lin JH, Ko TH, Yen MY (2009) Energy Fuels 23:4042Google Scholar
  39. 39.
    Pan CJ, Su WN, Senthil Kumar SM, Al Andra CC, Yang SJ, Chen HY, Hwang BJ (2012) J Chin Chem Soc 59:1303 Google Scholar
  40. 40.
    Beena KB, Sreekittan MU, Sreekumar K (2009) J Phys Chem C 113:17572Google Scholar
  41. 41.
    Kakade BA, Allouche H, Mahima S, Sathe BR, Pillai VK (2008) Carbon 46:567Google Scholar
  42. 42.
    Sun X, Li R, Villers D, Dodelet JP, Desiles S (2003) Chem Phys Lett 379:99Google Scholar
  43. 43.
    Wang Y, Iqbal Z, Mitra S (2006) J Am Chem Soc 128:95Google Scholar
  44. 44.
    Du CY, Zhao TS, Liang ZX (2008) J Power Sources 176:9Google Scholar
  45. 45.
    Peng F, Zheng I, Wang H, Lv P, Yu H (2005) Carbon 43:2397Google Scholar
  46. 46.
    Yumura T, Kimira K, Kobayashi H, Tanaka R, Okumura N, Yamabe T (2009) Phys Chem Chem Phys 11:8275Google Scholar
  47. 47.
    Okamoto Y (2005) Chem Phys Lett 407:354Google Scholar
  48. 48.
    Seger B, Kamat PV (2009) J Phys Chem C 113:7990Google Scholar
  49. 49.
    Kou R, Shao Y, Wang D, Englehard MH, Kwak JH, Wang J, Viswanathan V, Liu J (2009) Electrochem Comm 11:954Google Scholar
  50. 50.
    Li Y, Tang L, Li J (2009) Electrochem Comm 11:846Google Scholar
  51. 51.
    Gu Z, Peng H, Hauge RH, Smalley R, Margrave JL (2002) Nano Lett 2:1009Google Scholar
  52. 52.
    Wang S, Liang R, Wang B, Zhang C (2009) Carbon 47:53Google Scholar
  53. 53.
    Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Environ Sci Technol 39:1378Google Scholar
  54. 54.
    Li X, Hsing M (2006) Electrochim Acta 51:5250Google Scholar
  55. 55.
    Wu P, Li B, Du H, Gan L, Kang F, Zeng Y (2008) J Power Sources 184:381Google Scholar
  56. 56.
    Choi HC, Shim M, Bangsaruntip S, Dai H (2002) J Am Chem Soc 124:9058Google Scholar
  57. 57.
  58. 58.
  59. 59.
    Wang X, Waje M, Yan Y (2005) Electrochem Solid State Lett 8:A42Google Scholar
  60. 60.
    Li W, Wang X, Chen Z, Waje M, Yan Y (2005) Langmuir 21:9386Google Scholar
  61. 61.
    Wang C, Waje M, Wang X, Tang JM, Haddon RC, Yan Y (2004) Nano Lett 4:345Google Scholar
  62. 62.
    Wang X, Li W, Chen Z, Waje M, Yan Y (2006) J Power Sources 158:154Google Scholar
  63. 63.
    Britto PJ, Santhanam KSV, Rubio A, Allonso JA, Ajayan PM (1999) Adv Matt 11:154Google Scholar
  64. 64.
    Frank S, Poncharal P, Wang ZL, De Heer WA (1998) Science 280:1744Google Scholar
  65. 65.
    Liang W, Bockrath M, Bozovic D, Hafner JH, Tinkham M, Park H (2001) Nature 411:665Google Scholar
  66. 66.
    Lin JF, Kamavaram V, Kannan AM (2010) J Power Sources 195:466Google Scholar
  67. 67.
    Kakade BA, Pillai VK (2008) J Phys Chem C 112:3183Google Scholar
  68. 68.
    Kannan AM, Kanagala P, Veedu V (2009) J Power Sources 192:297Google Scholar
  69. 69.
    Huang JE, Guo DJ, Yao YG, Li HL (2005) J Electroanal Chem 577:93Google Scholar
  70. 70.
    Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) J Phys Chem B 107:6292Google Scholar
  71. 71.
    Girishkumar G, Vinodgopal K, Kamat PV (2004) J Phys Chem B 108:19960Google Scholar
  72. 72.
    Leela Mohana Reddy A, Ramaprabhu S (2007) J Phys Chem C 111:16138Google Scholar
  73. 73.
    Wang J, Yin G, Liu H, Li R, Flemming RL, Sun X (2009) J Power Sources 194:668Google Scholar
  74. 74.
    Rajalashmi N, Ryu H, Shaijumon MM, Ramaprabhu S (2005) J Power Sources 140:250Google Scholar
  75. 75.
    Villers D, Sun SH, Serventi AM, Dodelet JP, Desilets S (2006) J Phys Chem B 110:25916Google Scholar
  76. 76.
  77. 77.
    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760Google Scholar
  78. 78.
    Tang Y, Allen BL, Kauffman DR, Star A (2009) J Am Chem Soc 131:13200Google Scholar
  79. 79.
    Du HY, Wang CH, Hsu HC, Chang ST, Chen US, Yen SC, Chen LC, Shih HC, Chen KH (2008) Diam Relat Mater 17:535Google Scholar
  80. 80.
    Wu G, Xu BQ (2007) J Power Sources 174:148Google Scholar
  81. 81.
    Girishkumar G, Rettker M, Underhille R, Binz D, Vinodgopal K, Mcginn P, Kamat PV (2005) Langmuir 21:8487Google Scholar
  82. 82.
    Ma YL, Wainright JS, Litt MH, Savinell RF (2004) J Electrochem Soc 151:A8Google Scholar
  83. 83.
    Rhee CH, Kimm HK, Chang H, Lee JS (2005) Chem Mater 17:1691Google Scholar
  84. 84.
    Sahu AK, Selvarani G, Pitchumani S, Sridhar P, Shukla AK (2007) J Electrochem Soc 154:B123Google Scholar
  85. 85.
    Lee JH, Paik U, Choi JY, Kim KK, Yoon SM, Lee J, Kim BK, Kim JM, Park MH, Yang CW, An KH, Lee YH (2007) J Phys Chem C 111:2477Google Scholar
  86. 86.
    Adjemian KT, Dominey R, Krishnan L, Ota H, Majszrik P, Zhang T, Mann J, Kirby B, Gatto L, Simpson MV, Leahy K, Srinivaasan S, Benziger JB, Bocarsly AB (2006) Chem Mater 18:2238Google Scholar
  87. 87.
    Yu TL, Lin HL, Shen KS, Huang LN, Chang YC, Jung GB, Huang JC (2004) J. Polymer Res 11:217Google Scholar
  88. 88.
    Liu YH, Yi B, Shao ZG, Xing D, Zhang H (2006) Electrochem Solid State Lett 9:A356Google Scholar
  89. 89.
    Liu YH, Yi B, Shao ZG, Wang L, Xing D, Zhang H (2007) J Power Sources 163:807Google Scholar
  90. 90.
    Thomassin JM, Kollar J, Caldarea G, Germain A, Jerome R, Detrembleur C, Memb J (2007) Science 303:252Google Scholar
  91. 91.
    Kannan R, Kakade BA, Pillai VK (2008) Angew Chem 120:2693Google Scholar
  92. 92.
    Kannan R, Meera P, Maaraveedu SU, Kurungott S, Pillai VK (2009) Langmuir 25:8305Google Scholar
  93. 93.
    Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Mann JC, Boebinger GS, Kim P, Geim AK (2007) Science 315:1377Google Scholar
  94. 94.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conard EH, First PN, De Heer WA (2006) Science 312:1191Google Scholar
  95. 95.
    Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Mann JC, Boebinger GS, Kim P, Geim AK (2007) Science 315:1379Google Scholar
  96. 96.
    Rao CNR, Sood AK, Voggu R, Subrahmanyam KSJ (2010) Phys Chem Lett 1:572Google Scholar
  97. 97.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197Google Scholar
  98. 98.
    Ozulmaz B, Jarillo Herrero P, Efetov D, Kim P (2007) Appl Phys Lett 91:192107Google Scholar
  99. 99.
    Shinde DH, Debgupta J, Kushwaha A, Aslam M, Pillai VK (2011) J Am Chem Soc 133:4168Google Scholar
  100. 100.
    Yang J, Liu DJ, Kariuki NN, Chen LX (2008) Chem Comm 21:329Google Scholar
  101. 101.
    Xiong W, Du F, Lin Y, Perez A, Supp M, Ramakrishnan TS, Dai L, Jiang L (2010) J Am Chem Soc 132:15839Google Scholar
  102. 102.
    Kundu S, Nagaiah TC, Xia W, Wang Y, Dommele SV, Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M (2009) J Phys Chem C 113:14302Google Scholar
  103. 103.
    Geng D, Liu H, Chen Y, Li R, Sun X, Ye S, Knights S (2011) J Power Sources 196:1795Google Scholar
  104. 104.
    Wiggins-Camacho JD, Stevenson KJ (2011) J Phys Chem C 115:20002Google Scholar
  105. 105.
    Nagaiah TC, Kundu S, Bron M, Muhler M, Schuhmann W (2010) Electrochem Comm 12:338Google Scholar
  106. 106.
    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760Google Scholar
  107. 107.
    Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo JC, Pennycook SJ, Dai H (2012) Nat Nanotech 7:394Google Scholar
  108. 108.
    Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM (2012) Nano Energy 1:107Google Scholar
  109. 109.
    Alvarez GF, Mamlouk M, Senthil Kumar SM, Scott K (2011) J Appl Electrochem 41:925Google Scholar
  110. 110.
    Winther-Jensen B, Winther-Jensen O, Forsyth M, MacFarlane DR (2008) Science 321:671Google Scholar
  111. 111.
    Wieckowski A, Savinova ER, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker Inc, New YorkGoogle Scholar
  112. 112.
    Subhramannia M, Pillai VK (2008) J Mater Chem 18:5858Google Scholar
  113. 113.
    Subhramannia M, Ramaiyan K, Pillai VK (2008) Langmuir 24:3576Google Scholar
  114. 114.
    Subhramannia M, Ramaiyan K, Komath I, Aslam M, Pillai VK (2008) Chem Mater 20:601Google Scholar
  115. 115.
    Adzic RR, Tripkovic AV, O’Grady WE (1982) Nature 296:137Google Scholar
  116. 116.
    Motoo S, Furuya N (1985) J Electroanal Chem 184:303Google Scholar
  117. 117.
    Xia XH, Liess HD, Iwasita T (1997) J Electroanal Chem 437:233Google Scholar
  118. 118.
    Yamada M, Honma I (2006) Fuel Cells Bull 5:11Google Scholar
  119. 119.
    Malmstrom BG (1981) Annu Rev Biochem 51:21Google Scholar
  120. 120.
    Huang M, Shao Y, Sun X, Chen H, Liu B, Dong S (2005) Langmuir 21:323Google Scholar
  121. 121.
    Shoji M, Oyaizu K, Nishide H (2008) Polymer 49:5659Google Scholar
  122. 122.
    Saffarian HM, Srinivasan R, Chu D, Gilman S (2001) J Electroanal Chem 504:217Google Scholar
  123. 123.
    Meera P, Kannan R, Sreekumar K, Pillai VK (2010) J Mater Chem 20:9651Google Scholar
  124. 124.
    Ticianelli TA, Derouin CR, Srinivasan SJ (1988) J Electroanal Chem 251:275Google Scholar
  125. 125.
    Gazaryan IG, Lagrimini LM, Ashby GA, Thorneley RNF (1996) Biochem J 313:841Google Scholar
  126. 126.
    Sun W, Peppley BA, Karan K (2005) Electrochim Acta 50:3359Google Scholar
  127. 127.
    Tanimoto E (2005) Crit Rev Plant Sci 24:249Google Scholar
  128. 128.
    Kawano T (2003) Plant Cell Rep 21:829Google Scholar
  129. 129.
    Kreuer KD, Fuchs A, Ise M, Spaeth M, Maier J (1998) Electrochim Acta 43:1281Google Scholar
  130. 130.
    Wainright JS, Wang JT, Weng D, Savinell RF, Litt JM (1995) J Electochem Soc 142:L121Google Scholar
  131. 131.
    Kerres JA (2001) J Membr Sci 185:3Google Scholar
  132. 132.
    Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Chem Rev 104:4637Google Scholar
  133. 133.
    Mustarelli P, Quartarone E, Grandi S, Carollo A, Magistris A (2008) Adv Mater 20:1339Google Scholar
  134. 134.
    Li Q, He R, Jensen JO, Bjerrum NJ (2003) Chem Mater 15:4896Google Scholar
  135. 135.
    Pu H, Meyer WH, Wegner G (2002) J Polym Sci, Part B: Polym Phys 40:663Google Scholar
  136. 136.
    Weng D (1996) Ph.D. thesis, Case Western Reserve University, ClevelandGoogle Scholar
  137. 137.
    Quartarone E, Mustarelli P, Carollo A, Grandi S, Magistris A, Gelbaldi C (2009) Fuel Cells 9:231Google Scholar
  138. 138.
    Hasiotis C, Qingfeng L, Deimede V, Kallitsis JK, Kontoyannis CG, Bjerrum NJ (2001) J Electrochem Soc 148:A513Google Scholar
  139. 139.
    He R, Li Q, Xiao G, Bjerrum NJ (2003) J Membr Sci 226:169Google Scholar
  140. 140.
    Jang MY, Yamazaki Y (2005) J Power Sources 139:2Google Scholar
  141. 141.
    Chuang SW, Hsu SLC, Hsu CL (2007) J Power Sources 168:172Google Scholar
  142. 142.
    Li Q, Pan C, Jensen JO, Noye P, Bjerrum NJ (2007) Chem Mater 19:350Google Scholar
  143. 143.
    Lu Y, Chen J, Cui H, Zhou H (2008) Compos Sci Technol 68:3278Google Scholar
  144. 144.
    Xu H, Chen K, Guo X, Fang J, Yin J (2007) J Membr Sci 288:255Google Scholar
  145. 145.
    Song JY, Wang YY, Wan CC (1999) J Power Sources 77:183Google Scholar
  146. 146.
    Jankova K, Jannasch P, Hvilsted S (2004) J Mat Chem 14:2902Google Scholar
  147. 147.
    Meyer WH (1998) Adv Mater 10:439Google Scholar
  148. 148.
    Kurian M, Galvin ME, Trapa PE, Sadoway DR, Mayes AM (2005) Electrochim Acta 50:2125Google Scholar
  149. 149.
    Urtiaga AG, Presvytes D, Scott K (2012) Int J Hyd Energy 37:3358Google Scholar
  150. 150.
    Xu T, Liu Z, Li Y, Yang W (2008) J Membr Sci 320:232Google Scholar
  151. 151.
    Tang B, Wu P, Siesler HW (2008) J Phys Chem B 112:2880Google Scholar
  152. 152.
    Tzanetakis N, Varcoe J, Slade RS, Scott K (2003) Electrochem Comm 5:115Google Scholar
  153. 153.
    Wang X, Li M, Golding BT, Sadeghi M, Cao Y, Yu EH, Scott K (2011) Int J Hyd Energy 36:10022Google Scholar
  154. 154.
    Cao Y, Wu X, Scott K (2012) Int J Hyd Energy 37:9524Google Scholar
  155. 155.
    Kumar M, Singh S, Shahi VK (2010) J Phys Chem B 114:198Google Scholar
  156. 156.
    Liao SH, Hung C, Zhu H, Ma CC, Yen CY, Lin YF, Weng CC (2008) J Power Sources 176:175Google Scholar
  157. 157.
    Liao SH, Yen CY, Weng CC, Lin YF, Ma CC, Yang CH, Tsai MC, Yen MY, Hsiao MC, Lee SJ, Xie XF, Hsiao YH (2008) J Power Sources 185:1225Google Scholar
  158. 158.
    Yin Q, Sun KN, Li AJ, Shao L, Liu SM, Sun C (2008) J Power Sources 175:861Google Scholar
  159. 159.
    Wu M, Shaw LL (2004) J Power Sources 136:37Google Scholar
  160. 160.
    Cunningham B, Baird DG (2006) J Mater Chem 16:4385Google Scholar
  161. 161.
    Hermann A, Chaudhuri T, Spagnol P (2005) Int J Hyd Energy 30:1297Google Scholar
  162. 162.
    Wind J, Spah R, Kaiser W, Bohm G (2002) J Power Sources 105:256Google Scholar
  163. 163.
    Choi HS, Han DH, Hong WH, Lee JJ (2009) J Power Sources 189:966Google Scholar
  164. 164.
    Zhou Z, Dominey RN, Rolland JP, Maynor BW, Pandya AP, DeSimone JM (2006) J Am Chem Soc 128:12963Google Scholar
  165. 165.
    Shah K, Shin WC, Besser RS (2004) Sens Actuators B97:157Google Scholar
  166. 166.
    Nguyen NT, Chan SH (2006) J Micromech Microeng 16:R1Google Scholar
  167. 167.
    Kjeang E, Djilali N, Sinton D (2009) J Power Sources 186:353Google Scholar
  168. 168.
    Kim HT, Reshentenko TV, Kweon HJ (2007) J Electrochem Soc 154:B1034Google Scholar
  169. 169.
    Bieberle A, Gauckler LJ (2000) Solid State Ionics 135:337Google Scholar
  170. 170.
    Yang J, Liu DJ (2007) Carbon 45:2845Google Scholar
  171. 171.
    Zhao XM, Xia Y, Whitesides GM (1997) J Mater Chem 7:1069Google Scholar
  172. 172.
    Shah K, Shin WC, Besser RS (2003) J. Power Source 123:172Google Scholar
  173. 173.
    Jiang X, Bent SF (2009) J Phys Chem C 113:17613Google Scholar
  174. 174.
    Deshmukh AB, Kale VS, Dhavale VM, Sreekumar K, Pillai VK, Shelke MV (2010) Electrochem Commun 12:1638Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations