Skip to main content

1D Pd-Based Nanomaterials as Efficient Electrocatalysts for Fuel Cells

  • Chapter
  • First Online:
Low-cost Nanomaterials

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Since the first experiment conducted by William Grove in 1839, fuel cell, a device that converts the chemical energy stored in fuels into electricity through electrochemical reactions with oxygen or other oxidizing agents, has attracted worldwide attention in the past few decades. However, despite extensive research progress, the widespread commercialization of fuel cells is still a big challenge partly because of the low catalytic performance and high-cost of the Pt-based electrocatalysts. In addition, the hydrogen storage is another critical issue for the commercialization of hydrogen-powered fuel cells. Among the metal catalysts, Pd has been found to be a promising alternative because of its excellent catalytic properties and lower cost than Pt. Moreover, Pd-based materials exhibit high hydrogen storage capabilities. In this chapter, we summarize recent progress in the synthesis of one-dimensional (1D) Pd-based nanomaterials and their applications as electrocatalysts on both anodic and cathodic sides of fuel cells, and their applications in hydrogen storage. We demonstrated here that various 1D Pd-based nanomaterials, such as nanorods, nanowires, and nanotubes have been successfully prepared through different synthetic routes. The nanostructured 1D Pd-based materials exhibit high catalytic performance for electrooxidation of small organic molecules and oxygen reduction reaction (ORR). Moreover, high capacities for hydrogen storage have also been reported with 1D Pd-based nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dresselhaus MS, Thomas IL (2001) Nature 414(6861):332–337

    Google Scholar 

  2. Dillon R, Srinivasan S, Arico AS, Antonucci V (2004) J Power Sources 127(1–2):112–126

    Google Scholar 

  3. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) J Power Sources 105(2):283–296

    Google Scholar 

  4. Okada O, Yokoyama K (2001) Fuel Cells 1(1):72–77

    Google Scholar 

  5. Winter M, Brodd RJ (2004) Chem Rev 104(10):4245–4269

    Google Scholar 

  6. Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells: fundamentals, technology, and applications, vol 4. Wiley, Chichester

    Google Scholar 

  7. Chen AC, Holt-Hindle P (2010) Chem Rev 110(6):3767–3804

    Google Scholar 

  8. Chen W, Kim JM, Sun SH, Chen SW (2007) Langmuir 23(22):11303–11310

    Google Scholar 

  9. Zhang J, Yang HZ, Yang KK, Fang J, Zou SZ, Luo ZP, Wang H, Bae IT, Jung DY (2010) Adv Funct Mater 20(21):3727–3733

    Google Scholar 

  10. Yang HZ, Zhang J, Sun K, Zou SZ, Fang JY (2010) Angew Chem Int Ed 49(38):6848–6851

    Google Scholar 

  11. Chen W, Kim JM, Xu LP, Sun SH, Chen SW (2007) J Phys Chem C 111(36):13452–13459

    Google Scholar 

  12. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Science 315(5811):493–497

    Google Scholar 

  13. Xia BY, Wu HB, Wang X, Lou XW (2012) J Am Chem Soc 134(34):13934–13937

    Google Scholar 

  14. Chen W, Chen SW (2011) J Mater Chem 21(25):9169–9178

    Google Scholar 

  15. Chen W, Kim JM, Sun SH, Chen SW (2008) J Phys Chem C 112(10):3891–3898

    Google Scholar 

  16. Chen W, Kim J, Sun SH, Chen SW (2006) Phys Chem Chem Phys 8(23):2779–2786

    Google Scholar 

  17. Kang YJ, Murray CB (2010) J Am Chem Soc 132(22):7568–7569

    Google Scholar 

  18. Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1994) J Electrochem Soc 141(7):1795–1803

    Google Scholar 

  19. Dinh HN, Ren XM, Garzon FH, Zelenay P, Gottesfeld S (2000) J Electroanal Chem 491(1–2):222–233

    Google Scholar 

  20. Oetjen HF, Schmidt VM, Stimming U, Trila F (1996) J Electrochem Soc 143(12):3838–3842

    Google Scholar 

  21. Frelink T, Visscher W, vanVeen JAR (1996) Langmuir 12(15):3702–3708

    Google Scholar 

  22. Goodenough JB, Hamnett A, Kennedy BJ, Manoharan R, Weeks SA (1988) J Electroanal Chem 240(1–2):133–145

    Google Scholar 

  23. Chen W, Xu LP, Chen SW (2009) J Electroanal Chem 631(1–2):36–42

    Google Scholar 

  24. Lu YZ, Chen W (2011) Chem Commun 47(9):2541–2543

    Google Scholar 

  25. Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YN (2009) Science 324(5932):1302–1305

    Google Scholar 

  26. Chen W, Chen SW (2009) Angew Chem Int Edit 48(24):4386–4389

    Google Scholar 

  27. Chen W, Ny D, Chen SW (2010) J Power Sources 195(2):412–418

    Google Scholar 

  28. Liu HS, Song CJ, Tang YH, Zhang JL, Zhang HJ (2007) Electrochim Acta 52(13):4532–4538

    Google Scholar 

  29. Zhang L, Zhang JJ, Wilkinson DP, Wang HJ (2006) J Power Sources 156(2):171–182

    Google Scholar 

  30. Morozan A, Jousselme B, Palacin S (2011) Energy Environ Sci 4(4):1238–1254

    Google Scholar 

  31. Chen ZW, Higgins D, Yu AP, Zhang L, Zhang JJ (2011) Energy Environ Sci 4(9):3167–3192

    Google Scholar 

  32. Wei WT, Lu YZ, Chen W, Chen SW (2011) J Am Chem Soc 133(7):2060–2063

    Google Scholar 

  33. Lu YZ, Wang YC, Chen W (2011) J Power Sources 196(6):3033–3038

    Google Scholar 

  34. Wu HB, Chen W (2011) J Am Chem Soc 133(39):15236–15239

    Google Scholar 

  35. Serov A, Kwak C (2009) Appl Catal B Environ 91(1–2):1–10

    Google Scholar 

  36. Serov A, Kwak C (2009) Appl Catal B Environ 90(3–4):313–320

    Google Scholar 

  37. Lu YZ, Chen W (2012) Chem Soc Rev 41(9):3594–3623

    Google Scholar 

  38. Antolini E (2009) Energy Environ Sci 2(9):915–931

    Google Scholar 

  39. Bianchini C, Shen PK (2009) Chem Rev 109(9):4183–4206

    Google Scholar 

  40. Cheng TT, Gyenge EL (2009) J Appl Electrochem 39(10):1925–1938

    Google Scholar 

  41. Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A (2006) J Phys Chem B 110(27):13393–13398

    Google Scholar 

  42. Larsen R, Ha S, Zakzeski J, Masel RI (2006) J Power Sources 157(1):78–84

    Google Scholar 

  43. Mazumder V, Sun SH (2009) J Am Chem Soc 131(13):4588–4589

    Google Scholar 

  44. Xiao L, Zhuang L, Liu Y, Lu JT, Abruna HD (2009) J Am Chem Soc 131(2):602–608

    Google Scholar 

  45. Chen XM, Lin ZJ, Jia TT, Cai ZM, Huang XL, Jiang YQ, Chen X, Chen GN (2009) Anal Chim Acta 650(1):54–58

    Google Scholar 

  46. Fu Y, Wei ZD, Chen SG, Li L, Feng YC, Wang YQ, Ma XL, Liao MJ, Shen PK, Jiang SP (2009) J Power Sources 189(2):982–987

    Google Scholar 

  47. Hu FP, Chen CL, Wang ZY, Wei GY, Shen PK (2006) Electrochim Acta 52(3):1087–1091

    Google Scholar 

  48. Wei WT, Chen W (2012) J Power Sources 204:85–88

    Google Scholar 

  49. Jiang YY, Lu YZ, Li FH, Wu TS, Niu L, Chen W (2012) Electrochem Commun 19:21–24

    Google Scholar 

  50. Chen XM, Wu GH, Chen JM, Chen X, Xie ZX, Wang XR (2011) J Am Chem Soc 133(11):3693–3695

    Google Scholar 

  51. Zhang J, Fang JY (2009) J Am Chem Soc 131(51):18543–18547

    Google Scholar 

  52. Bergamaski K, Pinheiro ALN, Teixeira-Neto E, Nart FC (2006) J Phys Chem B 110(39):19271–19279

    Google Scholar 

  53. Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) J Phys Chem B 109(30):14433–14440

    Google Scholar 

  54. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Science 316(5825):732–735

    Google Scholar 

  55. Fernandez JL, Walsh DA, Bard AJ (2005) J Am Chem Soc 127(1):357–365

    Google Scholar 

  56. Suo YG, Zhuang L, Lu JT (2007) Angew Chem Int Edit 46(16):2862–2864

    Google Scholar 

  57. Schmidt TJ, Jusys Z, Gasteiger HA, Behm RJ, Endruschat U, Boennemann H (2001) J Electroanal Chem 501(1–2):132–140

    Google Scholar 

  58. Jiang L, Hsu A, Chu D, Chen R (2010) Electrochim Acta 55(15):4506–4511

    Google Scholar 

  59. Shao MH, Sasaki K, Adzic RR (2006) J Am Chem Soc 128(11):3526–3527

    Google Scholar 

  60. Jung CH, Sanchez-Sanchez CM, Lin CL, Rodriguez-Lopez J, Bard AJ (2009) Anal Chem 81(16):7003–7008

    Google Scholar 

  61. Fernandez JL, Raghuveer V, Manthiram A, Bard AJ (2005) J Am Chem Soc 127(38):13100–13101

    Google Scholar 

  62. Maiyalagan T, Scott K (2010) J Power Sources 195(16):5246–5251

    Google Scholar 

  63. He QG, Chen W, Mukerjee S, Chen SW, Laufek F (2009) J Power Sources 187(2):298–304

    Google Scholar 

  64. Zhu CZ, Guo SJ, Dong SJ (2012) Adv Mater 24(17):2326–2331

    Google Scholar 

  65. Zhu CZ, Guo SJ, Dong SJ (2012) J Mater Chem 22(30):14851–14855

    Google Scholar 

  66. Koenigsmann C, Sutter E, Chiesa TA, Adzic RR, Wong SS (2012) Nano Lett 12(4):2013–2020

    Google Scholar 

  67. Guo SJ, Dong SJ, Wang EK (2010) Chem Commun 46(11):1869–1871

    Google Scholar 

  68. Ksar F, Surendran G, Ramos L, Keita B, Nadjo L, Prouzet E, Beaunier P, Hagege A, Audonnet F, Remita H (2009) Chem Mater 21(8):1612–1617

    Google Scholar 

  69. Xu CW, Wang H, Shen PK, Jiang SP (2007) Adv Mater 19(23):4256–4259

    Google Scholar 

  70. Lu YZ, Chen W (2012) ACS Catal 2(1):84–90

    Google Scholar 

  71. Cheng FL, Wang H, Sun ZH, Ning MX, Cai ZQ, Zhang M (2008) Electrochem Commun 10(5):798–801

    Google Scholar 

  72. Wang H, Xu CW, Cheng FL, Zhang M, Wang SY, Jiang SP (2008) Electrochem Commun 10(10):1575–1578

    Google Scholar 

  73. Li WZ, Haldar P (2009) Electrochem Commun 11(6):1195–1198

    Google Scholar 

  74. Zhang ZY, More KL, Sun K, Wu ZL, Li WZ (2011) Chem Mater 23(6):1570–1577

    Google Scholar 

  75. Chen ZW, Waje M, Li WZ, Yan YS (2007) Angew Chem Int Edit 46(22):4060–4063

    Google Scholar 

  76. Lu YZ, Chen W (2010) J Phys Chem C 114(49):21190–21200

    Google Scholar 

  77. Xu CX, Zhang Y, Wang LQ, Xu LQ, Bian XF, Ma HY, Ding Y (2009) Chem Mater 21(14):3110–3116

    Google Scholar 

  78. Song YJ, Lee YW, Han SB, Park KW (2012) Mater Chem Phys 134(2–3):567–570

    Google Scholar 

  79. Alia SM, Jensen KO, Pivovar BS, Yan YS (2012) ACS Catal 2(5):858–863

    Google Scholar 

  80. Cui CH, Yu JW, Li HH, Gao MR, Liang HW, Yu SH (2011) ACS Nano 5(5):4211–4218

    Google Scholar 

  81. Koenigsmann C, Wong SS (2011) Energy Environ Sci 4(4):1161–1176

    Google Scholar 

  82. Huang XQ, Zheng NF (2009) J Am Chem Soc 131(13):4602–4603

    Google Scholar 

  83. Hoshi N, Kida K, Nakamura M, Nakada M, Osada K (2006) J Phys Chem B 110(25):12480–12484

    Google Scholar 

  84. Baldauf M, Kolb DM (1996) J Phys Chem 100(27):11375–11381

    Google Scholar 

  85. Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Appl Phys Lett 77(9):1399–1401

    Google Scholar 

  86. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) Adv Mater 15(5):353–389

    Google Scholar 

  87. Garbarino S, Ponrouch A, Pronovost S, Gaudet J, Guay D (2009) Electrochem Commun 11(10):1924–1927

    Google Scholar 

  88. Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Science 334(6056):645–648

    Google Scholar 

  89. Kudo A, Miseki Y (2009) Chem Soc Rev 38(1):253–278

    Google Scholar 

  90. Youngblood WJ, Lee SHA, Maeda K, Mallouk TE (2009) Acc Chem Res 42(12):1966–1973

    Google Scholar 

  91. Li Y, Zhang JZ (2010) Laser Photonics Rev 4(4):517–528

    MATH  Google Scholar 

  92. Maeda K, Domen K (2010) J Phys Chem Lett 1(18):2655–2661

    Google Scholar 

  93. Kruk M, Jaroniec M (2001) Chem Mater 13(10):3169–3183

    Google Scholar 

  94. Adams BD, Wu GS, Nigrio S, Chen AC (2009) J Am Chem Soc 131(20):6930–6931

    Google Scholar 

  95. Yeager E (1984) Electrochim Acta 29(11):1527–1537

    Google Scholar 

  96. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK (2006) Angew Chem Int Edit 45(18):2897–2901

    Google Scholar 

  97. Koenigsmann C, Santulli AC, Gong KP, Vukmirovic MB, Zhou WP, Sutter E, Wong SS, Adzic RR (2011) J Am Chem Soc 133(25):9783–9795

    Google Scholar 

  98. Sarkar A, Murugan AV, Manthiram A (2008) J Phys Chem C 112(31):12037–12043

    Google Scholar 

  99. Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP (2006) J Power Sources 155(2):95–110

    Google Scholar 

  100. Jin MS, Liu HY, Zhang H, Xie ZX, Liu JY, Xia YN (2011) Nano Res 4(1):83–91

    Google Scholar 

  101. Lee YW, Ko AR, Han SB, Kim HS, Kim DY, Kim SJ, Park KW (2010) Chem Commun 46(48):9241–9243

    Google Scholar 

  102. Wu HX, Li HJ, Zhai YJ, Xu XL, Jin YD (2012) Adv Mater 24(12):1594–1597

    Google Scholar 

  103. Sun SH, Zhang GX, Geng DS, Chen YG, Li RY, Cai M, Sun XL (2011) Angew Chem Int Edit 50(2):422–426

    Google Scholar 

  104. Guo SJ, Zhang S, Sun XL, Sun SH (2011) J Am Chem Soc 133(39):15354–15357

    Google Scholar 

  105. Xu CW, Cheng LQ, Shen PK, Liu YL (2007) Electrochem Commun 9(5):997–1001

    Google Scholar 

  106. Roudgar A, Gross A (2004) Surf Sci 559(2–3):L180–L186

    Google Scholar 

  107. Capon A, Parsons R (1973) J Electroanal Chem 45(2):205–231

    Google Scholar 

  108. Neurock M, Janik M, Wieckowski A (2008) Faraday Discuss 140:363–378

    Google Scholar 

  109. Samjeske G, Miki A, Ye S, Osawa M (2006) J Phys Chem B 110(33):16559–16566

    Google Scholar 

  110. Kang YJ, Qi L, Li M, Diaz RE, Su D, Adzic RR, Stach E, Li J, Murray CB (2012) ACS Nano 6(3):2818–2825

    Google Scholar 

  111. Miyake H, Okada T, Samjeske G, Osawa M (2008) Phys Chem Chem Phys 10(25):3662–3669

    Google Scholar 

  112. McKeown NB, Budd PM (2006) Chem Soc Rev 35(8):675–683

    Google Scholar 

  113. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300(5622):1127–1129

    Google Scholar 

  114. Zhao XB, Xiao B, Fletcher AJ, Thomas KM, Bradshaw D, Rosseinsky MJ (2004) Science 306(5698):1012–1015

    Google Scholar 

  115. Nakamori Y, Li HW, Matsuo M, Miwa K, Towata S, Orimo S (2008) J Phys Chem Solids 69(9):2292–2296

    Google Scholar 

  116. Bardhan R, Ruminski AM, Brand A, Urban JJ (2011) Energy Environ Sci 4(12):4882–4895

    Google Scholar 

  117. Pumera M (2011) Energy Environ Sci 4(3):668–674

    Google Scholar 

  118. Stephens FH, Baker RT, Matus MH, Grant DJ, Dixon DA (2007) Angew Chem Int Edit 46(5):746–749

    Google Scholar 

  119. Sun YG, Tao ZL, Chen J, Herricks T, Xia YN (2004) J Am Chem Soc 126(19):5940–5941

    Google Scholar 

  120. Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) J Am Chem Soc 130(6):1818–1819

    Google Scholar 

  121. Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2010) J Am Chem Soc 132(16):5576–5577

    Google Scholar 

  122. Weiss A, Ramaprabhu S, Rajalakshmi N (1997) Z Phys Chem 199:165–212

    Google Scholar 

  123. Uemiya S, Matsuda T, Kikuchi E (1991) J Membr Sci 56(3):315–325

    Google Scholar 

  124. Barlag H, Opara L, Zuchner H (2002) J Alloys Compd 330:434–437

    Google Scholar 

  125. Lu YZ, Jin RT, Chen W (2011) Nanoscale 3(6):2476–2480

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21275136, 21043013), the Natural Science Foundation of Jilin province, China (No. 201215090), and Scientific Research Foundation for Returned Scholars, Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Lu, Y., Chen, W. (2014). 1D Pd-Based Nanomaterials as Efficient Electrocatalysts for Fuel Cells. In: Lin, Z., Wang, J. (eds) Low-cost Nanomaterials. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6473-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6473-9_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6472-2

  • Online ISBN: 978-1-4471-6473-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics