Skip to main content

Magnesium and Doped Magnesium Nanostructured Materials for Hydrogen Storage

  • Chapter
  • First Online:
Low-cost Nanomaterials

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Hydrogen is an attractive fuel for many applications because of its high energy density as molecular hydrogen, as well as the clean exhaust produced when burned with oxygen. One significant challenge to the widespread adoption of hydrogen, for mobile applications in particular, is the inability to efficiently store large amounts of readily accessible hydrogen in small volumes at ambient temperature and pressure. This chapter describes the current research on one particularly interesting candidate for hydrogen storage, nanostructured magnesium. The synthetic methods currently used to control the size and shape of nanostructured magnesium are described, as are the measured kinetics of hydrogen storage, the modeling used to explain the observed kinetics, and theoretical models that can be used to guide experimental efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosi NL, Eckert J, Eddadoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi O (2003) Science 300:1127

    Article  Google Scholar 

  2. Hirscher M, Becher M, Haluska M, Dettlaff-Weglikowska U, Quintel A, Duesberg GS, Choi YM, Downes P, Hulman M, Roth S, Stepanek I, Bernier P (2001) Appl Phys A 72:129

    Article  Google Scholar 

  3. Schlapbach L, Zuttel A (2001) Nature 414:253

    Article  Google Scholar 

  4. Zaluska A, Zaluski L, Strom-Olsen JO (2001) Appl Phys A 72:157

    Article  Google Scholar 

  5. Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) J Alloy Compd 292:247

    Article  Google Scholar 

  6. Shao H, Xu H, Wang Y, Li X (2004) Nanotechnology 15:269

    Article  Google Scholar 

  7. Zaluska A, Zaluski L, Strom-Olsen JO (1999) J Alloy Compd 288:217

    Article  Google Scholar 

  8. Friedrichs O, Kolodziejczyk L, Sanchez-Lopez JC, Lopez-Cartes C, Fernandez A (2007) J Alloys Compd 434–435:721

    Article  Google Scholar 

  9. Huhn PA, Dornheim M, Klassen T, Bormann R (2005) J Alloys Compd 404–406:499

    Article  Google Scholar 

  10. Imamura H, Masanari K, Kusuhara M, Katsumoto H, Sumi T, Sakata Y (2005) J Alloys Compd 386:211

    Article  Google Scholar 

  11. Huot J, Tremblay ML, Schulz R (2003) J Alloys Compd 356–357:603

    Article  Google Scholar 

  12. Doppiu S, Schultz L, Gutfleisch O (2007) J Alloys Compd 427:204

    Article  Google Scholar 

  13. Varin RA, Czujko T, Chiu C, Wronski Z (2006) J Alloys Compd 424:356

    Article  Google Scholar 

  14. Paskevicius M, Sheppard DA, Buckley CE (2010) J Am Chem Soc 132:5077

    Article  Google Scholar 

  15. Leiva DR, Floriano R, Huot J, Jorge AM, Bolfarini C, Kiminami CS, Ishikawa TT, Botta WJ (2011) J Alloys Compd 509:S444

    Article  Google Scholar 

  16. Shao H, Liu T, Wang Y, Xu H, Li X (2008) J Alloys Compd 465:527

    Article  Google Scholar 

  17. Zou J, Sun H, Zeng X, Ji G, Ding W (2012) J Nanomater 2012:592147

    Google Scholar 

  18. Zhu C, Akiyama T (2012) Cryst Growth Des 12:4043

    Article  Google Scholar 

  19. Li W, Li C, Ma H, Chen J (2007) J Am Chem Soc 129:6710

    Article  Google Scholar 

  20. Setijadi EJ, Boyer C, Aguey-Zinsou KF (2012) Phys Chem Chem Phys 14:11386

    Article  Google Scholar 

  21. Kalidindi SB, Jagirdar BR (2009) Inorg Chem 48:4524

    Article  Google Scholar 

  22. Redl FX, Cho K-S, Murray CB, O’Brien S (2003) Nature 423:968

    Article  Google Scholar 

  23. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Nature 404:59

    Article  Google Scholar 

  24. Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291:2115

    Article  Google Scholar 

  25. Ouyang M, Awschalom DD (1074) Science 2003:301

    Google Scholar 

  26. Milliron DJ, Hughes SM, Cui Y, Manna L, Li J, Wang L-W, Alivisatos AP (2004) Nature 430:190

    Article  Google Scholar 

  27. Aguey-Zinsou KF, Ares-Fernandez J-R (2008) Chem Mater 20:376

    Article  Google Scholar 

  28. Bogdanovic B, Spliethoff B (1987) Int J Hydrogen Energy 12:863

    Article  Google Scholar 

  29. Li WY, Li CS, Ma H, Chen J (2007) J Am Chem Soc 129:6710

    Article  Google Scholar 

  30. Huot J, Liang G, Schulz R (2001) Appl Phys A-Mater Sci Process 72:187

    Article  Google Scholar 

  31. Aguey-Zinsou KF, Ares-Fernandez JR (2008) Chem Mater 20:376

    Article  Google Scholar 

  32. Viyannalage L, Lee V, Dennis RV, Kapoor D, Haines CD, Banerjee S (2012) Chem Commun 48:5169

    Article  Google Scholar 

  33. Norberg NS, Arthur TS, Fredrick SJ, Prieto AL (2011) J Am Chem Soc 133:10679

    Article  Google Scholar 

  34. Jeon KJ, Moon HR, Ruminski AM, Jiang B, Kisielowski C, Bardhan R, Urban JJ (2011) Nat Mater 10:286

    Article  Google Scholar 

  35. Aguey-Zinsou KF, Ares-Fernandez JR (2010) Energy Environ Sci 3:526

    Article  Google Scholar 

  36. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Int J Hydrogen Energy 32:1121

    Article  Google Scholar 

  37. Wagner LK, Majzoub EH, Allendorf MD, Grossman JC (2012) Phys Chem Chem Phys 14:6611

    Article  Google Scholar 

  38. Yang J, Sudik A, Wolverton C, Siegel DJ (2010) Chem Soc Rev 39:656

    Article  Google Scholar 

  39. Cleri F, Celino M, Montone A, Bonetti E, Pasquini L (2007) In: Uskokovic DP, Milonjic SK, Rakovic DI (eds) Research trends in contemporary materials science, vol 555. p 349

    Google Scholar 

  40. Hanada N, Ichikawa T, Fujii H (2005) J Phys Chem B 109:7188

    Article  Google Scholar 

  41. Moser D, Bull DJ, Sato T, Noreus D, Kyoi D, Sakai T, Kitamura N, Yusa H, Taniguchi T, Kalisvaart WP, Notten P (2009) J Mater Chem 19:8150

    Article  Google Scholar 

  42. Shang CX, Bououdina M, Song Y, Guo ZX (2004) Int J Hydrogen Energy 29:73

    Article  Google Scholar 

  43. Zeng XQ, Cheng LF, Zou JX, Ding WJ, Tian HY, Buckley C (2012) J Appl Phys 2012:111

    Google Scholar 

  44. Hanada N, Ichikawa T, Isobe S, Nakagawa T, Tokoyoda K, Honma T, Fujii H, Kojima Y (2009) J Phys Chem C 113:13450

    Article  Google Scholar 

  45. Oelerich W, Klassen T, Bormann R (2001) Adv Eng Mater 3:487

    Article  Google Scholar 

  46. Oelerich W, Klassen T, Bormann R (2001) J Alloy Compd 315:237

    Article  Google Scholar 

  47. Kelkar T, Pal S (2009) J Mater Chem 19:4348

    Article  Google Scholar 

  48. Liu T, Qin C, Zhang T, Cao Y, Zhu M, Li X (2012) J Mater Chem 22:19831

    Article  Google Scholar 

  49. Vajo JJ, Mertens F, Ahn CC, Bowman RC, Fultz B (2004) J Phys Chem B 108:13977

    Article  Google Scholar 

  50. Shahi RR, Tiwari AP, Shaz MA, Srivastava ON (2013) Int J Hydrogen Energy 38:2778

    Article  Google Scholar 

  51. Lu J, Choi YJ, Fang ZZ, Sohn HY, Ronnebro E (2010) J Am Chem Soc 132:6616

    Article  Google Scholar 

  52. Schimmel HG, Huot J, Chapon LC, Tichelaar FD, Mulder FM (2005) J Am Chem Soc 127:14348

    Article  Google Scholar 

  53. Oelerich W, Klassen T, Bormann R (2001) J Alloy Compd 322:L5

    Article  Google Scholar 

  54. Kalisvaart P, Luber E, Fritzsche H, Mitlin D (2011) Chem Commun 47:4294

    Article  Google Scholar 

  55. Asselli AAC, Leiva DR, Jorge AM, Ishikawa TT, Botta WJ (2012) J Alloy Compd 536:S250

    Article  Google Scholar 

  56. Montone A, Aurora A, Gattia DM, Antisari MV (2012) Catalysts 2:400

    Article  Google Scholar 

  57. Yavari AR, Vaughan G, de Castro FR, Georgarakis K, Jorge AM, Nuta I, Botta WJ (2012) J Alloy Compd 540:57

    Article  Google Scholar 

  58. Bogdanovic B, Hofmann H, Neuy A, Reiser A, Schlichte K, Spliethoff B, Wessel S (1999) J Alloy Compd 292:57

    Article  Google Scholar 

  59. Gutfleisch O, Dal TS, Herrich M, Handstein A, Pratt A (2005) J Alloys Compd 404–406:413

    Article  Google Scholar 

  60. Hanada N, Hirotoshi E, Ichikawa T, Akiba E, Fujii H (2008) J Alloy Compd 450:395

    Article  Google Scholar 

  61. Lillo-Rodenas MA, Aguey-Zinsou KF, Cazorla-Amoros D, Linares-Solano A, Guo ZX (2008) J Phys Chem C 112:5984

    Article  Google Scholar 

  62. Varin RA, Czujko T, Wasmund EB, Wronski ZS (2007) J Alloys Compd 432:217

    Article  Google Scholar 

  63. Xie L, Liu Y, Zhang X, Qu J, Wang Y, Li X (2009) J Alloys Compd 482:388

    Article  Google Scholar 

  64. Walker GS, Abbas M, Grant DM, Udeh C (2011) Chem Commun 47:8001

    Article  Google Scholar 

  65. da Conceicao MOT, Brum MC, dos Santos DS, Dias ML (2013) J Alloy Compd 550:179

    Article  Google Scholar 

  66. Hanada N, Ichikawa T, Hino S, Fujii H (2006) J Alloy Compd 420:46

    Article  Google Scholar 

  67. Porcu M, Petford-Long AK, Sykes JM (2008) J Alloys Compd 453:341

    Article  Google Scholar 

  68. Liang G, Huot J, Boily S, Schulz R (2000) J Alloy Compd 305:239

    Article  Google Scholar 

  69. Blach TP, Gray EM (2007) J Alloy Compd 446–447:692

    Article  Google Scholar 

  70. Mintz MH, Zeiri Y (1995) J Alloy Compd 216:159

    Article  Google Scholar 

  71. Lee Y-W, Clemens BM, Gross KJ (2008) J Alloy Compd 452:410

    Article  Google Scholar 

  72. Sabitu ST, Goudy AJ (2012) Metals 2:219

    Article  Google Scholar 

  73. Markmaitree T, Ren R, Shaw LL (2006) J Phys Chem B 110:20710

    Article  Google Scholar 

  74. Flynn JH, Wall LA (1966) J Polym Sci Part B: Polym Lett 4:323

    Article  Google Scholar 

  75. Ozawa T (1970) J Therm Anal Calorim 2:301

    Article  Google Scholar 

  76. Kissinger HE (1957) Anal Chem 29:1702

    Article  Google Scholar 

  77. Li C-R, Tang T (1999) J Mater Sci 34:3467

    Article  Google Scholar 

  78. Karty A, Grunzweig-Genossar J, Rudman PS (1979) J Appl Phys 50:7200

    Article  Google Scholar 

  79. Stander CM (1977) J Inorg Nucl Chem 39:221

    Article  Google Scholar 

  80. Barkhordarian G, Klassen T, Bormann R (2006) J Alloy Compd 407:249

    Article  Google Scholar 

  81. Zhdanov VP (2008) Surf Rev Lett 15:605

    Article  Google Scholar 

  82. Berube V, Radtke G, Dresselhaus M, Chen G (2007) Int J Energy Res 31:637

    Article  Google Scholar 

  83. Avrami M (1939) J Chem Phys 7:1103

    Article  Google Scholar 

  84. Johnson WA, Mehl RF (1939) Trans Am Inst Min Metall Eng 135:416

    Google Scholar 

  85. Avrami M (1940) J Chem Phys 8:212

    Article  Google Scholar 

  86. Avrami M (1941) J Chem Phys 9:177

    Article  Google Scholar 

  87. Jacobs PWM, Tompkins FC (1955) Chemistry of the solid state. Butterworths, London

    Google Scholar 

  88. Tran NE, Lambrakos SG, Imam MA (2006) J Alloy Compd 407:240

    Article  Google Scholar 

  89. Ron M (1999) J Alloy Compd 283:178

    Article  Google Scholar 

  90. Fernandez JF, Sanchez CR (2002) J Alloy Compd 340:189

    Article  Google Scholar 

  91. Karty A, Grunzweiggenossar J, Rudman PS (1979) J Appl Phys 50:7200

    Article  Google Scholar 

  92. Reilly JJ, Wiswall RH (1967) Inorg Chem 6:2220

    Article  Google Scholar 

  93. Barkhordarian G, Klassen T, Bormann R (2006) J Phys Chem B 110:11020

    Article  Google Scholar 

  94. Barkhordarian G, Klassen T, Bormann R (2003) Scripta Mater 49:213

    Article  Google Scholar 

  95. Barkhordarian G, Klassen T, Bormann R (2004) J Alloy Compd 364:242

    Article  Google Scholar 

  96. Callini E, Pasquini L, Jensen TR, Bonetti E (2013) Int J Hydrogen Energy 38:12207

    Google Scholar 

  97. Ma T, Ma S, Isobe Y, Wang N, Hashimoto S, Ohnuki T (2013) J Phys Chem C 117:10302

    Article  Google Scholar 

  98. Ares Fernandez J-R, Ares Fernández K-F, Aguey Zinsou J-R, Ares F (2012) Catalysts 2:330

    Google Scholar 

  99. Shevlin SA, Guo ZX (2013) J Phys Chem C 117:10883

    Article  Google Scholar 

  100. Fu Y, Groll M, Mertz R, Kulenovic R (2008) J Alloys Compd 460:607

    Article  Google Scholar 

  101. Cermak J, Kral L (2012) J Power Sources 214:208

    Article  Google Scholar 

  102. Liu J, Song XP, Pei P, Chen GL (2009) J Alloys Compd 486:338

    Article  Google Scholar 

  103. Niaz NA, Hussain ST, Nasir S, Ahmad I (2012) Key Eng Mater 510–511:371

    Article  Google Scholar 

  104. Shahi RR, Yadav TP, Shaz MA, Srivastva ON (2010) Int J Hydrogen Energy 35:238

    Article  Google Scholar 

  105. Song Y, Guo ZX, Yang R (2004) Phys Rev B 2004:69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy L. Prieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Shissler, D.J., Fredrick, S.J., Braun, M.B., Prieto, A.L. (2014). Magnesium and Doped Magnesium Nanostructured Materials for Hydrogen Storage. In: Lin, Z., Wang, J. (eds) Low-cost Nanomaterials. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6473-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6473-9_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6472-2

  • Online ISBN: 978-1-4471-6473-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics