Skip to main content

Low-Cost Nanomaterials for Photoelectrochemical Water Splitting

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Hydrogen represents a clean and high gravimetric energy density chemical fuel that could potentially replace fossil fuels and natural gas in electricity generation and powering vehicles. Central to the success of hydrogen technology and economy, the sustainability, efficiency and cost of hydrogen generation are the major factors. Industrial hydrogen is currently obtained from steam methane reforming and water-gas shift reaction, however, this method still relays on fossil fuels. Therefore, it is important to develop efficient, low-cost, and scalable method to produce hydrogen in a sustainable manner. Photoelectrochemical (PEC) water splitting to produce hydrogen is one of most promising and sustainable approaches. The development of low-cost and efficient nanostructured photoelectrodes is the key to achieve this goal. In this chapter, we will give a brief background on PEC water splitting and review the recent advancement of developing low-cost nanostructured photoelectrodes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahn S, Kim K, Cho A, Gwak J, Yun JH, Shin K, Ahn S, Yoon K (2012) CuInSe2 (CIS) thin films prepared from amorphous Cu-In-Se nanoparticle precursors for solar cell application. Acs Appl Mater Inter 4(3):1530–1536

    Google Scholar 

  2. Alfano OM, Bahnemann D, Cassano AE, Dillert R, Goslich R (2000) Photocatalysis in water environments using artificial and solar light. Catal Today 58(2–3):199–230

    Google Scholar 

  3. Barroso M, Cowan AJ, Pendlebury SR, Gratzel M, Klug DR, Durrant JR (2011) The role of cobalt phosphate in enhancing the photocatalytic activity of alpha-Fe2O3 toward water oxidation. J Am Chem Soc 133(38):14868–14871

    Google Scholar 

  4. Cai QY, Paulose M, Varghese OK, Grimes CA (2005) The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res 20(1):230–236

    Google Scholar 

  5. Cesar I, Sivula K, Kay A, Zboril R, Graetzel M (2009) Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J Phys Chem C 113(2):772–782

    Google Scholar 

  6. Chen X, Ye J, Ouyang S, Kako T, Li Z, Zou Z (2011) Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano 5(6):4310–4318

    Google Scholar 

  7. Cho IS, Chen ZB, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng XL (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11(11):4978–4984

    Google Scholar 

  8. Chouhan N, Yeh CL, Hu SF, Liu RS, Chang WS, Chen KH (2011) Photocatalytic CdSe QDs-decorated ZnO nanotubes: an effective photoelectrode for splitting water. Chem Commun 47(12):3493–3495

    Google Scholar 

  9. Cong Y, Zhang JL, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111(19):6976–6982

    Google Scholar 

  10. Cristino V, Caramori S, Argazzi R, Meda L, Marra GL, Bignozzi CA (2011) Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes. Langmuir 27(11):7276–7284

    Google Scholar 

  11. Currao A (2007) Photoelectrochemical water splitting. Chimia 61(12):815–819

    Google Scholar 

  12. Elfanaoui A, Elhamri E, Boulkaddat L, Ihlal A, Bouabid K, Laanab L, Taleb A, Portier X (2011) Optical and structural properties of TiO2 thin films prepared by sol-gel spin coating. Int J Hydrogen Energ 36(6):4130–4133

    Google Scholar 

  13. Farhangi N, Chowdhury RR, Medina-Gonzalez Y, Ray MB, Charpentier PA (2011) Visible light active Fe doped TiO2 nanowires grown on graphene using supercritical CO2. Appl Catal B-Environ 110:25–32

    Google Scholar 

  14. Fei HH, Yang YC, Rogow DL, Fan XJ, Oliver SRJ (2010) Polymer-templated nanospider TiO2 thin films for efficient photoelectrochemical water splitting. Acs Appl Mater Inter 2(4):974–979

    Google Scholar 

  15. Feng XJ, LaTempa TJ, Basham JI, Mor GK, Varghese OK, Grimes CA (2010) Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett 10(3):948–952

    Google Scholar 

  16. Feng XJ, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA (2008) Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett 8(11):3781–3786

    Google Scholar 

  17. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Google Scholar 

  18. Gan JY, Lu XH, Zhai T, Zhao YF, Xie SL, Mao YC, Zhang YL, Yang YY, Tong YX (2011) Vertically aligned In2O3 nanorods on FTO substrates for photoelectrochemical applications. J Mater Chem 21(38):14685–14692

    Google Scholar 

  19. Ghicov A, Aldabergenova S, Tsuchyia H, Schmuki P (2006) TiO2-Nb2O5 nanotubes with electrochemically tunable morphologies. Angew Chem-Int Edit 45(42):6993–6996

    Google Scholar 

  20. Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2005) Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun 7(5):505–509

    Google Scholar 

  21. Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16(12):3331–3334

    Google Scholar 

  22. Gopal NO, Lo HH, Ke TF, Lee CH, Chou CC, Wu JD, Sheu SC, Ke SC (2012) Visible light active phosphorus-doped TiO2 nanoparticles: an EPR evidence for the enhanced charge separation. J Phys Chem C 116(30):16191–16197

    Google Scholar 

  23. Gratzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Google Scholar 

  24. Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang YF, Saykally RJ, Yang PD (2003) Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem-Int Edit 42(26):3031–3034

    Google Scholar 

  25. Gust D, Moore TA, Moore AL (2009) Solar Fuels via Artificial Photosynthesis. Acc Chem Res 42(12):1890–1898

    Google Scholar 

  26. Hamd W, Cobo S, Fize J, Baldinozzi G, Schwartz W, Reymermier M, Pereira A, Fontecave M, Artero V, Laberty-Robert C, Sanchez C (2012) Mesoporous alpha-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation. Phys Chem Chem Phys 14(38):13224–13232

    Google Scholar 

  27. Hendry E, Koeberg M, O’Regan B, Bonn M (2006) Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Lett 6(4):755–759

    Google Scholar 

  28. Hensel J, Wang GM, Li Y, Zhang JZ (2010) Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett 10(2):478–483

    Google Scholar 

  29. Hill JC, Choi KS (2012) Effect of electrolytes on the selectivity and stability of n-type WO3 photoelectrodes for use in solar water oxidation. J Phys Chem C 116(14):7612–7620

    Google Scholar 

  30. Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB (2012) Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J Am Chem Soc 134(8):3659–3662

    Google Scholar 

  31. Hoang S, Guo SW, Hahn NT, Bard AJ, Mullins CB (2012) Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett 12(1):26–32

    Google Scholar 

  32. Hodes G, Cahen D, Manassen J (1976) Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC). Nature 260(5549):312–313

    Google Scholar 

  33. Hong SJ, Jun H, Borse PH, Lee JS (2009) Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int J Hydrogen Energ 34(8):3234–3242

    Google Scholar 

  34. Kabre J, LeSuer RJ (2012) Modeling diffusion of tin into the mesoporous titanium dioxide layer of a dye-sensitized solar cell photoanode. J Phys Chem C 116(34):18327–18333

    Google Scholar 

  35. Katz MJ, Riha SC, Jeong NC, Martinson ABF, Farha OK, Hupp JT (2012) Toward solar fuels: water splitting with sunlight and “rust”? Coord Chem Rev 256(21–22):2521–2529

    Google Scholar 

  36. Kay A, Cesar I, Gratzel M (2006) New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J Am Chem Soc 128(49):15714–15721

    Google Scholar 

  37. Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2 2. Science 297(5590):2243–2245

    Google Scholar 

  38. Kim H, Seol M, Lee J, Yong K (2011) Highly efficient photoelectrochemical hydrogen generation using hierarchical ZnO/WOx nanowires cosensitized with CdSe/CdS. J Phys Chem C 115(51):25429–25436

    Google Scholar 

  39. LaTempa TJ, Feng XJ, Paulose M, Grimes CA (2009) Temperature-dependent growth of self-assembled hematite (alpha-Fe2O3) nanotube arrays: rapid electrochemical synthesis and photoelectrochemical properties. J Phys Chem C 113(36):16293–16298

    Google Scholar 

  40. Lee KY, Schmuki P (2011) Highly ordered nanoporous Ta2O5 formed by anodization of Ta at high temperatures in a glycerol/phosphate electrolyte. Electrochem Commun 13(6):542–545

    Google Scholar 

  41. Li LS, Yu YH, Meng F, Tan YZ, Hamers RJ, Jin S (2012) Facile solution synthesis of alpha-FeF3 center dot 3H2O nanowires and their conversion to alpha-Fe2O3 nanowires for photoelectrochemical application. Nano Lett 12(2):724–731

    Google Scholar 

  42. Li Y, Zhang JZ (2010) Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photon Rev 4(4):517–528

    MATH  Google Scholar 

  43. Liang SZ, He JF, Sun ZH, Liu QH, Jiang Y, Cheng H, He B, Xie Z, Wei SQ (2012) Improving photoelectrochemical water splitting activity of TiO2 nanotube arrays by tuning geometrical parameters. J Phys Chem C 116(16):9049–9053

    Google Scholar 

  44. Lin YG, Hsu YK, Chen YC, Chen LC, Chen SY, Chen KH (2012) Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting. Nanoscale 4(20):6515–6519

    Google Scholar 

  45. Lin YJ, Xu Y, Mayer MT, Simpson ZI, McMahon G, Zhou S, Wang DW (2012) Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting. J Am Chem Soc 134(12):5508–5511

    Google Scholar 

  46. Lin YJ, Zhou S, Sheehan SW, Wang DW (2011) Nanonet-based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc 133(8):2398–2401

    Google Scholar 

  47. Ling Y, Wang G, Reddy J, Wang C, Zhang JZ, Li Y (2012) The influence of oxygen content on the thermal activation of hematite nanowires. Angew Chem Int Ed Engl 51(17):4074–4079

    Google Scholar 

  48. Ling YC, Wang GM, Wheeler DA, Zhang JZ, Li Y (2011) Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11(5):2119–2125

    Google Scholar 

  49. Linsebigler AL, Lu GQ, Yates JT (1995) Photocatalysis on TiO2 surfaces- principles, mechanisms and selected results. Chem Rev 95(3):735–758

    Google Scholar 

  50. Liu LP, Wang GM, Li Y, Li YD, Zhang JZ (2011) CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Res 4(3):249–258

    Google Scholar 

  51. Liu R, Lin Y, Chou LY, Sheehan SW, He W, Zhang F, Hou HJM, Wang D (2011) Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew Chem 123(2):519–522

    Google Scholar 

  52. Liu R, Lin YJ, Chou LY, Sheehan SW, He WS, Zhang F, Hou HJM, Wang DW (2011) Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew Chem-Int Edit 50(2):499–502

    Google Scholar 

  53. Liu X, Wang F, Wang Q (2012) Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys Chem Chem Phys 14(22):7894–7911

    Google Scholar 

  54. Liu X, Wang FY, Wang Q (2012) Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys Chem Chem Phys 14(22):7894–7911

    Google Scholar 

  55. Lu XH, Wang D, Li GR, Su CY, Kuang DB, Tong YX (2009) Controllable electrochemical synthesis of hierarchical ZnO nanostructures on FTO glass. J Phys Chem C 113(31):13574–13582

    Google Scholar 

  56. Lu XH, Wang GM, Xie SL, Shi JY, Li W, Tong YX, Li Y (2012) Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. Chem Commun 48(62):7717–7719

    Google Scholar 

  57. Macak JM, Schmuki P (2006) Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim Acta 52(3):1258–1264

    Google Scholar 

  58. Mao YC, He JT, Sun XF, Li W, Lu XH, Gan JY, Liu ZQ, Gong L, Chen J, Liu P, Tong YX (2012) Electrochemical synthesis of hierarchical Cu2O stars with enhanced photoelectrochemical properties. Electrochim Acta 62:1–7

    Google Scholar 

  59. Mayer MT, Du C, Wang DW (2012) Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. J Am Chem Soc 134(30):12406–12409

    Google Scholar 

  60. Mohamed AE, Rohani S (2011) Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy Environ Sci 4(4):1065–1086

    Google Scholar 

  61. Mrowetz M, Balcerski W, Colussi AJ, Hoffmann MR (2004) Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J Phys Chem B 108(45):17269–17273

    Google Scholar 

  62. Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD, Glasscock JA (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energ 31(14):1999–2017

    Google Scholar 

  63. Myung Y, Jang DM, Sung TK, Sohn YJ, Jung GB, Cho YJ, Kim HS, Park J (2010) Composition-tuned ZnO-CdSSe core-shell nanowire arrays. ACS Nano 4(7):3789–3800

    Google Scholar 

  64. Neville EM, Mattle MJ, Loughrey D, Rajesh B, Rahman M, MacElroy JMD, Sullivan JA, Thampi KR (2012) Carbon-doped TiO2 and carbon, tungsten-codoped TiO2 through sol-gel processes in the presence of melamine borate: reflections through photocatalysis. J Phys Chem C 116(31):16511–16521

    Google Scholar 

  65. Nocera DG (2012) The artificial leaf. Acc Chem Res 45(5):767–776

    MathSciNet  Google Scholar 

  66. Noriyuki H, Toru K, Tomoe H, Kenji K, Hiroshi H (2011) Fabrication of ZnO/Zn1-xMgxO heterostructure thin films by sol-gel spin-coating method. Phys Status Solidi C 8 (2):2511–2515

    Google Scholar 

  67. Ohko Y, Saitoh S, Tatsuma T, Fujishima A (2002) Photoelectrochemical anticorrosion effect of SrTiO3 for carbon steel. Electrochem Solid State Lett 5(2):B9–B12

    Google Scholar 

  68. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6(1):24–28

    Google Scholar 

  69. Parmar KPS, Kang HJ, Bist A, Dua P, Jang JS, Lee JS (2012) Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes. ChemSusChem 5(10):1926–1934

    Google Scholar 

  70. Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA (2007) TiO2 nanotube arrays of 1000 mu m length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 111(41):14992–14997

    Google Scholar 

  71. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, LaTempa TJ, Fitzgerald A, Grimes CA (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length. J Phys Chem B 110(33):16179–16184

    Google Scholar 

  72. Prochazka J, Kavan L, Zukalova M, Janda P, Jirkovsky J, Zivcova Z (2012) Dense TiO2 films grown by sol–gel dip coating on glass, F-doped SnO2, and silicon substrates. J. Mater. Res. 28(3): 385–393

    Google Scholar 

  73. Qi XP, She GW, Liu YY, Mu LX, Shi WS (2012) Electrochemical synthesis of CdS/ZnO nanotube arrays with excellent photoelectrochemical properties. Chem Commun 48(2):242–244

    Google Scholar 

  74. Qin DD, Tao CL, Friesen SA, Wang TH, Varghese OK, Bao NZ, Yang ZY, Mallouk TE, Grimes CA (2012) Dense layers of vertically oriented WO3 crystals as anodes for photoelectrochemical water oxidation. Chem Commun 48(5):729–731

    Google Scholar 

  75. Qiu YC, Chen W, Yang SH (2010) Double-layered photoanodes from variable-size anatase TiO2 nanospindles: a candidate for high-efficiency dye-sensitized solar cells. Angew Chem-Int Edit 49(21):3675–3679

    Google Scholar 

  76. Qiu YC, Yan KY, Deng H, Yang SH (2012) Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett 12(1):407–413

    Google Scholar 

  77. Raja KS, Gandhi T, Misra M (2007) Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochem Commun 9(5):1069–1076

    Google Scholar 

  78. Seabold JA, Choi KS (2011) Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem Mat 23(5):1105–1112

    Google Scholar 

  79. Seol M, Kim H, Kim W, Yong K (2010) Highly efficient photoelectrochemical hydrogen generation using a ZnO nanowire array and a CdSe/CdS co-sensitizer. Electrochem Commun 12(10):1416–1418

    Google Scholar 

  80. Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng XJ, Paulose M, Seabold JA, Choi KS, Grimes CA (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113(16):6327–6359

    Google Scholar 

  81. Shankar K, Mor GK, Fitzgerald A, Grimes CA (2007) Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide—Water mixtures. J Phys Chem C 111(1):21–26

    Google Scholar 

  82. Sivula K, Le Formal F, Gratzel M (2011) Solar Water Splitting: Progress Using Hematite (alpha-Fe2O3) Photoelectrodes. ChemSusChem 4(4):432–449

    Google Scholar 

  83. Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Gratzel M (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132(21):7436–7444

    Google Scholar 

  84. Su J, Guo L, Bao N, Grimes CA (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11(5):1928–1933

    Google Scholar 

  85. Su JZ, Feng XJ, Sloppy JD, Guo LJ, Grimes CA (2011) Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett 11(1):203–208

    Google Scholar 

  86. Su R, Bechstein R, Kibsgaard J, Vang RT, Besenbacher F (2012) High-quality Fe-doped TiO2 films with superior visible-light performance. J Mater Chem 22(45):23755–23758

    Google Scholar 

  87. Sun JW, Liu C, Yang PD (2011) Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J Am Chem Soc 133(48):19306–19309

    Google Scholar 

  88. Sun K, Jing Y, Li C, Zhang XF, Aguinaldo R, Kargar A, Madsen K, Banu K, Zhou YC, Bando Y, Liu ZW, Wang DL (2012) 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation. Nanoscale 4(5):1515–1521

    Google Scholar 

  89. Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6(8):511–518

    Google Scholar 

  90. Tilley SD, Cornuz M, Sivula K, Gratzel M (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem-Int Edit 49(36):6405–6408

    Google Scholar 

  91. Tsuchiya H, Macak JM, Taveira L, Balaur E, Ghicov A, Sirotna K, Schmuki P (2005) Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem Commun 7(6):576–580

    Google Scholar 

  92. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473

    Google Scholar 

  93. Wang DF, Pierre A, Kibria MG, Cui K, Han XG, Bevan KH, Guo H, Paradis S, Hakima AR, Mi ZT (2011) Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett 11(6):2353–2357

    Google Scholar 

  94. Wang G, Li Y (2013) Nickel catalyst boosts solar hydrogen generation of CdSe nanocrystals. ChemCatChem 5(6):1294–1295

    Google Scholar 

  95. Wang G, Ling Y, Lu XH, Qian F, Tong YX, Zhang JZ, Lordi V, Leao CR, Li Y (2013) Computational and photoelectrochemical study of hydrogenated bismuth vanadate. J Phys Chem C 117(21):10957–10964

    Google Scholar 

  96. Wang GM, Ling YC, Li Y (2012) Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4(21):6682–6691

    Google Scholar 

  97. Wang GM, Ling YC, Lu XH, Wang HY, Qian F, Tong YX, Li Y (2012) Solar driven hydrogen releasing from urea and human urine. Energy Environ Sci 5(8):8215–8219

    Google Scholar 

  98. Wang GM, Ling YC, Lu XH, Zhai T, Qian F, Tong YX, Li Y (2013) A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale 5(10):4129–4133

    Google Scholar 

  99. Wang GM, Ling YC, Wang HY, Yang XY, Wang CC, Zhang JZ, Li Y (2012) Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci 5(3):6180–6187

    Google Scholar 

  100. Wang GM, Ling YC, Wheeler DA, George KEN, Horsley K, Heske C, Zhang JZ, Li Y (2011) Facile synthesis of highly photoactive alpha-Fe2O3-based films for water oxidation. Nano Lett 11(8):3503–3509

    Google Scholar 

  101. Wang GM, Wang HY, Ling YC, Tang YC, Yang XY, Fitzmorris RC, Wang CC, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7):3026–3033

    Google Scholar 

  102. Wang GM, Yang XY, Qian F, Zhang JZ, Li Y (2010) Double-sided CdS and CdSe quantum dot Co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett 10(3):1088–1092

    Google Scholar 

  103. Wang HY, Wang GM, Ling YC, Lepert M, Wang CC, Zhang JZ, Li Y (2012) Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale 4(5):1463–1466

    Google Scholar 

  104. Wei W, Lee K, Shaw S, Schmuki P (2012) Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes. Chem Commun 48(35):4244–4246

    Google Scholar 

  105. Wheeler DA, Wang GM, Ling YC, Li Y, Zhang JZ (2012) Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ Sci 5(5):6682–6702

    Google Scholar 

  106. Widenkvist E, Quinlan RA, Holloway BC, Grennberg H, Jansson U (2008) Synthesis of nanostructured tungsten oxide thin films. Cryst Growth Des 8(10):3750–3753

    Google Scholar 

  107. Wolcott A, Smith WA, Kuykendall TR, Zhao YP, Zhang JZ (2009) Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater 19(12):1849–1856

    Google Scholar 

  108. Wolcott A, Smith WA, Kuykendall TR, Zhao YP, Zhang JZ (2009) Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small 5(1):104–111

    Google Scholar 

  109. Xie KY, Li J, Lai YQ, Lu W, Zhang ZA, Liu YX, Zhou LM, Huang HT (2011) Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem Commun 13(6):657–660

    Google Scholar 

  110. Xu YL, He Y, Cao XD, Zhong DJ, Jia JP (2008) TiO2/Ti rotating disk photoelectrocatalytic (PEC) reactor: a combination of highly effective thin-film PEC and conventional PEC processes on a single electrode. Environ Sci Technol 42(7):2612–2617

    Google Scholar 

  111. Yang XY, Wolcott A, Wang GM, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9(6):2331–2336

    Google Scholar 

  112. Yang Y, Ling YC, Wang GM, Lu XH, Tong YX, Li Y (2013) Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates. Nanoscale 5(5):1820–1824

    Google Scholar 

  113. Ye H, Lee J, Jang JS, Bard AJ (2010) Rapid screening of BiVO4-based photocatalysts by scanning electrochemical microscopy (SECM) and studies of their photoelectrochemical properties. J Phys Chem C 114(31):13322–13328

    Google Scholar 

  114. Ye H, Park HS, Bard AJ (2010) Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J Phys Chem C 115(25):12464–12470

    Google Scholar 

  115. Yin WJ, Wei SH, Al-Jassim MM, Turner J, Yan YF (2011) Doping properties of monoclinic BiVO4 studied by first-principles density-functional theory. Phys Rev B 83(15):11

    Google Scholar 

  116. Yoriya S, Paulose M, Varghese OK, Mor GK, Grimes CA (2007) Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes. J Phys Chem C 111(37):13770–13776

    Google Scholar 

  117. Zhang J, Bang JH, Tang CC, Kamat PV (2010) Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1):387–395

    Google Scholar 

  118. Zhang J, Wang XL, Xia XH, Gu CD, Zhao ZJ, Tu JP (2010) Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers. Electrochim Acta 55(23):6953–6958

    Google Scholar 

  119. Zhang ML, Luo WJ, Li ZS, Yu T, Zou ZG (2010) Improved photoelectrochemical responses of Si and Ti codoped alpha-Fe2O3 photoanode films. Appl Phys Lett 97(4):3

    Google Scholar 

  120. Zheng HD, Sadek AZ, Latham K, Kalantar-Zadeh K (2009) Nanoporous WO3 from anodized RF sputtered tungsten thin films. Electrochem Commun 11(4):768–771

    Google Scholar 

  121. Zhong DK, Choi S, Gamelin DR (2011) Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J Am Chem Soc 133(45):18370–18377

    Google Scholar 

  122. Zhong DK, Cornuz M, Sivula K, Graetzel M, Gamelin DR (2011) Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ Sci 4(5):1759–1764

    Google Scholar 

  123. Zhong DK, Gamelin DR (2011) Photoelectrochemical water oxidation by cobalt catalyst (“Co-Pi”)/alpha-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc 132(12):4202–4207

    Google Scholar 

  124. Zhong DK, Sun JW, Inumaru H, Gamelin DR (2009) Solar water oxidation by composite catalyst/alpha-Fe2O3 photoanodes. J Am Chem Soc 131(17):6086–6087

    Google Scholar 

  125. Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18(18):2426–2431

    Google Scholar 

  126. Zhong M, Li YB, Yamada I, Delaunay JJ (2012) ZnO-ZnGa2O4 core-shell nanowire array for stable photoelectrochemical water splitting. Nanoscale 4(5):1509–1514

    Google Scholar 

  127. Zhu W, Liu X, Liu HQ, Tong DL, Yang JY, Peng JY (2010) Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition. J Am Chem Soc 132(36):12619–12626

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yat Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Wang, G., Lu, X., Li, Y. (2014). Low-Cost Nanomaterials for Photoelectrochemical Water Splitting. In: Lin, Z., Wang, J. (eds) Low-cost Nanomaterials. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-6473-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6473-9_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6472-2

  • Online ISBN: 978-1-4471-6473-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics