Skip to main content

Gosper’s Algorithm

  • Chapter
  • First Online:
Hypergeometric Summation

Part of the book series: Universitext ((UTX))

Abstract

For a moment, let’s have a break from searching for hypergeometric term solutions and recurrence equations of infinite series. Instead, we will deal with sums with variable limits of summation, an interesting topic in itself. Later, this will prove to be a useful tool in discovering an algorithmic method for infinite sums.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of course this is only so if \(f\) is absolutely continuous. Otherwise the Fundamental Theorem of Calculus might not be applicable.

  2. 2.

    Relation \(\gcd (f,g)=1\) means that there is no nontrivial, hence nonconstant, common divisor.

  3. 3.

    We use the same functions \(p_k, q_k\), and \(r_k\) as Gosper did, even though he worked with the backward antidifference. It may mean that we have some more shifts here than necessary.

  4. 4.

    For the sake of completeness let the maximum of the empty set equal \(-\infty \).

  5. 5.

    For convenience, we set \(\deg (0)\,{:=}\,-1\). Then (5.21) remains valid for non-zero constant \(f_k\).

  6. 6.

    The current author did the implementation of Version V.4 which is available in the sumtools package. However, this version is now superseded by the SumTools package.

  7. 7.

    It might be inefficient to use the modified implementation in the general case, though.

References

  1. Abramov, S.A., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear operator equations. In: Proceedings of ISSAC 95, pp. 290–296. ACM Press, New York (1995)

    Google Scholar 

  2. Böing, H.: Theorie und Anwendungen zur \(q\)-hypergeometrischen Summation. Diploma thesis, Freie Universität Berlin (1998)

    Google Scholar 

  3. Böing, H., Koepf, W.: Algorithms for \(q\)-hypergeometric summation in computer algebra. J. Symbolic Comput. 28, 777–799 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bronstein, M.: Introduction to Symbolic Integration. Algorithms and Computation in Mathematics. Springer, Berlin (1996)

    Google Scholar 

  5. Davenport, J.H., Siret, Y., Tournier, E.: Computer-Algebra: Systems and Algorithms for Algebraic Computation. Academic Press, London (1988)

    MATH  Google Scholar 

  6. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, vol. 35, 2nd edn. Cambridge University Press, London and New York (1990). (Second Edition 2004)

    Google Scholar 

  7. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer Academic Publishers, Boston/Dordrecht/London (1992)

    Book  MATH  Google Scholar 

  8. Gosper Jr, R.W.: Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 75, 40–42 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. In: A Foundation for Computer Science. Addison-Wesley, Reading, Massachussets (1994)

    Google Scholar 

  10. Ierley, G.R., Ruehr, O.G.: Problem 96–16. SIAM Rev. 38, 668 (1996)

    Article  Google Scholar 

  11. Karr, M.: Summation in finite terms. J. ACM 28, 305–350 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Koepf, W.: Algorithms for \(m\)-fold hypergeometric summation. J. Symbolic Comput. 20, 399–417 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Koepf, W.: Computeralgebra. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Koornwinder, T.H.: On Zeilberger’s algorithm and its \(q\)-analogue. J. Comput. Appl. Math. 48, 91–111 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Man, Y.-K., Wright, F.J.: Fast polynomial dispersion computation and its application to indefinite summation. In: Proceedings of ISSAC 94, pp. 175–180. ACM Press, New York (1994)

    Google Scholar 

  16. Overhauser, A.W., Kim, Y.I.: Problem 94–2. SIAM Rev. 36, 107 (1994)

    Article  Google Scholar 

  17. Paule, P.: Greatest factorial factorization and symbolic summation. J. Symbolic Comput. 20, 235–268 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Paule, P., Riese, A.: A Mathematica \(q\)-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to \(q\)-hypergeometric telescoping. In: Ismail, M.E.H., et al. (eds.) Fields Institute Communications, vol. 14, pp. 179–210. American Mathematical Society, Providence (1997)

    Google Scholar 

  19. Petkovšek, M., Wilf, H., Zeilberger, D.: \(A=B\). A K Peters, Wellesley (1996)

    Google Scholar 

  20. Riese, A.: A generalization of Gosper’s algorithm to bibasic hypergeometric summation. Electron. J. Comb. 3 (1996)

    Google Scholar 

  21. Risch, R.: The problem of integration in finite terms. Trans. Amer. Math. Soc. 139, 167–189 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  22. Risch, R.: The solution of the problem of integration in finite terms. Bull. Amer. Math. Soc. 76, 605–608 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schneider, C.: Symbolic summation in difference fields. PhD thesis, RISC Linz, Johannes Kepler Universität Linz (2001)

    Google Scholar 

  24. Schneider, C.: Symbolic summation with single-nested sum extensions. In: Proceedings of ISSAC 04, pp. 282–289. ACM Press, New York (2004)

    Google Scholar 

  25. Schneider, C.: A refined difference field theory for symbolic summation. J. Symbolic Comput. 43, 611–644 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zippel, R.: Effective Polynomial Computation. Kluwer Academic Publishers, Dordrecht (1993)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Koepf .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Koepf, W. (2014). Gosper’s Algorithm. In: Hypergeometric Summation. Universitext. Springer, London. https://doi.org/10.1007/978-1-4471-6464-7_5

Download citation

Publish with us

Policies and ethics