Hypergeometric Identities

  • Wolfram Koepf
Part of the Universitext book series (UTX)


In this chapter we deal with hypergeometric identities.


Hypergeometric Function Recurrence Equation Legendre Polynomial Hypergeometric Series Binomial Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. AAR99.
    Andrews, G., Askey, R.A., Roy, R.: Special Functions: Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge-New York (1999)CrossRefMATHGoogle Scholar
  2. Apéry79.
    Apéry, R.: Irrationalité de \(\zeta (2)\) et \(\zeta (3)\). Astérisque 61, 11–13 (1979)MATHGoogle Scholar
  3. Bailey35.
    Bailey, W.N.: Generalized Hypergeometric Series. Cambridge University Press, Cambridge (1935). Reprinted 1964 by Stechert-Hafner Service Agency, New York-London.Google Scholar
  4. deBranges85.
    De Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154, 137–152 (1985)CrossRefMATHMathSciNetGoogle Scholar
  5. GR90.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series (Encyclopedia of Mathematics and its Applications) vol. 35, 2nd edn (2004). Cambridge University Press, London and New York (1990)Google Scholar
  6. Gasper97.
    Gasper, G.: Elementary derivations of summation and transformation formulas for \(q\)-series. In: Ismail, M.E.H., et al. (eds.) Fields Institute Communications, vol. 14, pp. 55–70. American Mathematics Society, Providence (1997)Google Scholar
  7. GKP94.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: a Foundation for Computer Science, 2nd edn. Addison-Wesley, Reading, Massachussets (1994)MATHGoogle Scholar
  8. Rainville60.
    Rainville, E.D.: Special Functions. The MacMillan Co., New York (1960)MATHGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Fachbereich 10 Mathematik und NaturwissenschaftenUniversität KasselKasselGermany

Personalised recommendations