Skip to main content

Sparse Discriminants and Applications

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 84))

Abstract

Polynomial algebra offers a standard, powerful, and robust approach to handle several important problems in geometric modelling and other areas. A key tool is the discriminant of a univariate polynomial, or of a well-constrained system of polynomial equations, which expresses the existence of multiple (or degenerate) roots. We describe discriminants in a general context, and relate them to an equally useful object, namely the resultant of an overconstrained polynomial system. We discuss several relevant applications in geometric modelling so as to motivate the use of such algebraic tools in further geometric problems. We focus on exploiting the sparseness of polynomials via the theory of Newton polytopes and sparse elimination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bernstein, D.N.: The number of roots of a system of equations. Funct. Anal. Appl. 9(2), 183–185 (1975)

    Google Scholar 

  2. Bihan, F., Rojas, J.M., Stella, C.E.: Faster real feasibility via circuit discriminants. In: Proceedings of ACM ISSAC, Seoul, Korea (2009)

    Google Scholar 

  3. Bosman, J.: A polynomial with Galois group \(SL_{2}(\mathbb{F}_{16})\). LMS J. Comp. & Math. 10, 378–388 (2007)

    Google Scholar 

  4. Busé, L., Jouanolou, J.: A computational approach to the discriminant of homogeneous polynomials. Technical Report. http://hal.inria.fr/hal-00747930/en/ (2012)

  5. Canny, J.F.: The Complexity of Robot Motion Planning. M.I.T. Press, Cambridge (1988)

    Google Scholar 

  6. Canny, J.F., Emiris, I.Z.: Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symb. Comput. 20(2), 117–149 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cattani, E., Cueto, M.A., Dickenstein, A., Di Rocco, S., Sturmfels, B.: Mixed discriminants. Math. Z. 274, 761–778 (2013)

    Google Scholar 

  8. Cheng, H., Han, Z.: Minimal kinematic constraints and MT2. J. High-Energy Phys. 2008(12), 063 (2008)

    Google Scholar 

  9. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1997)

    Google Scholar 

  10. D’Andrea, C., Sombra, M.: A Poisson Formula for the Sparse Resultant. Preprint, arXiv:1310.6617 (2013)

  11. Dickenstein, A., Emiris, I.Z., Karasoulou, A.: SAGA: Advances in shapes, algebra, and geometry. Plane Mixed Discriminants and Toric Jacobians (2014)

    Google Scholar 

  12. Dickenstein, A., Emiris, I.Z. (eds.): Solving Polynomial Equations, Algorithms and Computation in Mathematics 14. Springer, Heidelberg (2005)

    Google Scholar 

  13. Dickenstein, A., Rojas, J.M., Rusek, K., Shih, J.: Extremal real algebraic geometry and a-discriminants. Moscow Math. J. 7, 425–452 (2007)

    MATH  MathSciNet  Google Scholar 

  14. Dickenstein, A.: A world of binomials, foundations of computational mathematics (hong kong 2008). Lond. Math. Soc. Lec. Note Ser. 363, 42–66 (2009)

    MathSciNet  Google Scholar 

  15. Emiris, I.Z., Fisikopoulos, V., Konaxis, C., Penaranda, L.: An output-sensitive algorithm for computing projections of resultant polytopes. In: Proceedings of ACM Symposium Computational Geometry, pp. 179–188 (2012). To appear in Intern. J. Comput. Geom. Appl.

    Google Scholar 

  16. Emiris, I.Z., Tsigaridas, E., Tzoumas, G.: Exact Voronoi diagram of smooth convex pseudocircles: General predicates, and implementation for ellipses. J. Comput. Aided. Geom. Des. 30(8), 760–777 (2013)

    Google Scholar 

  17. Emiris, I.Z., Tsigaridas, E.P.: Real algebraic numbers and polynomial systems of small degree. Theor. Comput. Sci. 409(2), 186–199 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Emiris, I.Z., Kalinka, T., Konaxis, C., Luu Ba, T.: Sparse implicitization by interpolation:characterizing non-exactness and an application to computing discriminants. J. Comput. Aided Des. 45, 252–261 (2013)

    Article  MathSciNet  Google Scholar 

  19. Faugére, J.-C., Moroz, G., Rouillier, F., Safey El Din, M.: Classification of the perspective-three-point problem: Discriminant variety and real solving polynomial systems of inequalities. In: Proceedings of ACM ISSAC, Hagenberg (Austria), pp. 79–86 (2008)

    Google Scholar 

  20. Faugére, J.-C., Spaenlehauer, P.-J.: Algebraic cryptanalysis of the PKC 2009 algebraic surface cryptosystem. In: Public Key Cryptography, pp. 35–52 (2010)

    Google Scholar 

  21. Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants, Mathematics: Theory & Applications. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  22. Godwin, A.N.: The precise determination of maxwell sets for cuspoid catastrophes. Int. J. Math. Edu. Sci. & Technol. 15(2), 167–182 (2006)

    Article  MathSciNet  Google Scholar 

  23. González-Vega, L., Nacula, I.: Efficient topology determination of implicitly defined algebraic plane curves. Comput. Aided Geom. Des. 19(9), 719–743 (2002)

    Article  MATH  Google Scholar 

  24. Guárdia, J., Montes, J., Nart, E.: Higher newton polygons in the computation of discriminants and prime ideal decomposition in number fields. J. de Théorie des Nombres de Bordeaux 23, 667–696 (2011)

    Google Scholar 

  25. Manocha, D., Demmel, J.: Algorithms for intersecting parametric and algebraic curves ii: multiple intersections. Graph. Models Image Proc. 57(2), 81–100 (1995)

    Article  Google Scholar 

  26. Moroz, G., Rouiller, F., Chablat, D., Wenger, P.: On the determination of cusp points of 3-rpr parallel manipulators. Mech. & Mach. Theor. 45(11), 1555–1567 (2010)

    Article  MATH  Google Scholar 

  27. Pedersen, P., Sturmfels, B.: Product formulas for resultants and chow forms. Math. Z. 214(1), 377–396 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sturmfels, B.: On the Newton polytope of the resultant. J. Algebraic Combin. 3(2), 207–236 (1994)

    Google Scholar 

  29. Sylvester, J.J.: Sur l’extension de la théorie des résultants algébriques. Comptes Rendus de l’Académie des Sci. LVIII, 1074–1079 (1864)

    Google Scholar 

  30. van der Hoeven, J., Lecerf, G., Mourain, B.: Mathemagix. http://www.mathemagix.org/ (2002)

  31. van der Waerden, B.L.: Modern Algebra, 3rd edn. F. Ungar Publishing Co., New York (1950)

    Google Scholar 

  32. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Dover, Mineola (1994)

    Google Scholar 

Download references

Acknowledgments

We thank Alicia Dickenstein for useful discussions. I. Z. Emiris was partially supported by Marie-Curie Initial Training Network “SAGA” (ShApes, Geometry, Algebra), FP7-PEOPLE contract PITN-GA-2008-214584. A. Karasoulou’s research leading to these results has received funding from the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program “ARISTEIA”, project “ESPRESSO: Exploiting Structure in Polynomial Equation and System Solving in Physical Modeling".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Z. Emiris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this paper

Cite this paper

Emiris, I.Z., Karasoulou, A. (2014). Sparse Discriminants and Applications. In: De Amicis, R., Conti, G. (eds) Future Vision and Trends on Shapes, Geometry and Algebra. Springer Proceedings in Mathematics & Statistics, vol 84. Springer, London. https://doi.org/10.1007/978-1-4471-6461-6_4

Download citation

Publish with us

Policies and ethics