Skip to main content
Book cover

Chorea pp 295–334Cite as

Chorea: A Surgical Approach

  • Chapter
  • First Online:
  • 1035 Accesses

Abstract

The term chorea refers to a hyperkinetic movement disorder that can present with a broad spectrum of clinical conditions. Choreic movements can be reversible (self-limited) or can be controlled by treating the underlying cause. However, especially in patients who have chorea secondary to neurodegenerative diseases, only symptomatic treatments can be effective (and not always successfully). In such instances, chorea can lead to severe disability with heavy impact on patients’ quality of life. As a result, more aggressive treatment must be pursued. Functional neurosurgery has been applied for the treatment of movement disorders since the 1940s. The former ablative procedures have been replaced during the last 25 years by deep brain stimulation and additional functional neurosurgical techniques. When applied to chorea, some investigators report potential utility of these surgical approaches. However, in the absence of high level of scientific evidence, the surgical approach for treating chorea still remains empirical. Several other experimental approaches (such as cellular transplantation and delivery of neurotrophic factors) have showed promising results when applied to animal models of Huntington’s disease, the most frequent neurodegenerative cause of chorea.

The aim of this chapter is to review from the literature the available data regarding neurosurgical approaches to chorea and to update the current status of experimental techniques with the promise for treating choreic conditions in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28 [Review].

    CAS  PubMed  Google Scholar 

  2. Goetz CG, Chmura TA, Lanska DJ. History of chorea: part 3 of the MDS-sponsored history of movement disorders exhibit, Barcelona, June 2000. Mov Disord. 2001;16(2):331–8 [Biography Historical Article Portraits].

    CAS  PubMed  Google Scholar 

  3. Lanska DJ. Chapter 33: The history of movement disorders. Handb Clin Neurol. 2010;95:501–46 [Historical Article Review].

    PubMed  Google Scholar 

  4. Huntington G. On chorea. Med Surg Reporter. 1872;26:320–1.

    Google Scholar 

  5. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–83.

    Google Scholar 

  6. Ondo WG, Hanna PA, Jankovic J. Tetrabenazine treatment for tardive dyskinesia: assessment by randomized videotape protocol. Am J Psychiatry. 1999;156(8):1279–81 [Clinical Trial Randomized Controlled Trial].

    CAS  PubMed  Google Scholar 

  7. Cardoso F, Seppi K, Mair KJ, Wenning GK, Poewe W. Seminar on choreas. Lancet Neurol. 2006;5(7):589–602 [Review].

    PubMed  Google Scholar 

  8. Venuto CS, McGarry A, Ma Q, Kieburtz K. Pharmacologic approaches to the treatment of Huntington’s disease. Mov Disord. 2012;27(1):31–41 [Review].

    CAS  PubMed  Google Scholar 

  9. Reiner P, Galanaud D, Leroux G, Vidailhet M, Haroche J, du Huong LT, et al. Long-term outcome of 32 patients with chorea and systemic lupus erythematosus or antiphospholipid antibodies. Mov Disord. 2011;26(13):2422–7 [Comparative Study].

    PubMed  Google Scholar 

  10. Kleinsasser BJ, Misra LK, Bhatara VS, Sanchez JD. Risperidone in the treatment of choreiform movements and aggressiveness in a child with “PANDAS”. S D J Med. 1999;52(9):345–7 [Case Reports].

    CAS  PubMed  Google Scholar 

  11. Huntington Study Group. Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology. 2006;66(3):366–72 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Google Scholar 

  12. Sitburana O, Ondo WG. Tetrabenazine for hyperglycemic-induced hemichorea-hemiballismus. Mov Disord. 2006;21(11):2023–5 [Case Reports].

    PubMed  Google Scholar 

  13. Gras D, Jonard L, Roze E, Chantot-Bastaraud S, Koht J, Motte J, et al. Benign hereditary chorea: phenotype, prognosis, therapeutic outcome and long term follow-up in a large series with new mutations in the TITF1/NKX2-1 gene. J Neurol Neurosurg Psychiatry. 2012;83(10):956–62 [Case Reports Multicenter Study].

    PubMed  Google Scholar 

  14. Calabro RS, Polimeni G, Gervasi G, Bramanti P. Postthalamic stroke dystonic choreoathetosis responsive to tetrabenazine. Ann Pharmacother. 2011;45(12):e65 [Case Reports].

    PubMed  Google Scholar 

  15. Chatterjee A, Frucht SJ. Tetrabenazine in the treatment of severe pediatric chorea. Mov Disord. 2003;18(6):703–6 [Case Reports].

    PubMed  Google Scholar 

  16. Genel F, Arslanoglu S, Uran N, Saylan B. Sydenham’s chorea: clinical findings and comparison of the efficacies of sodium valproate and carbamazepine regimens. Brain Dev. 2002;24(2):73–6 [Clinical Trial Comparative Study Controlled Clinical Trial].

    PubMed  Google Scholar 

  17. Chandra V, Spunt AL, Rusinowitz MS. Treatment of post-traumatic choreo-athetosis with sodium valproate. J Neurol Neurosurg Psychiatry. 1983;46(10):963 [Case Reports Letter].

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Giroud M, Dumas R. Valproate sodium in postanoxic choreoathetosis. J Child Neurol. 1986;1(1):80 [Letter].

    CAS  PubMed  Google Scholar 

  19. Lenton RJ, Copti M, Smith RG. Hemiballismus treated with sodium valproate. Br Med J. 1981;283(6283):17–8 [Case Reports].

    CAS  Google Scholar 

  20. Green LN. Corticosteroids in the treatment of Sydenham’s chorea. Arch Neurol. 1978;35(1):53–4.

    CAS  PubMed  Google Scholar 

  21. Van Horn G, Arnett FC, Dimachkie MM. Reversible dementia and chorea in a young woman with the lupus anticoagulant. Neurology. 1996;46(6):1599–603 [Case Reports].

    PubMed  Google Scholar 

  22. Min JH, Youn YC. Bilateral basal ganglia lesions of primary Sjogren syndrome presenting with generalized chorea. Parkinsonism Relat Disord. 2009;15(5):398–9 [Case Reports Letter].

    PubMed  Google Scholar 

  23. Walter BL, Vitek JL. Surgical treatment for Parkinson’s disease. Lancet Neurol. 2004;3(12):719–28 [Review].

    PubMed  Google Scholar 

  24. Bucy PC, Case T. Tremor: physiologic mechanism and abolition by surgical means. Arch Neurol Psychiatry. 1939;41:721–46.

    Google Scholar 

  25. Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–50.

    CAS  PubMed  Google Scholar 

  26. Hankinson J. Surgery of the dyskinesias. Proc R Soc Med. 1973;66(9):876–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Spiegel EA, Wycis HT. Pallidothalamotomy in chorea. Arch Neurol Psychiatry. 1950;64(2):295–6.

    CAS  PubMed  Google Scholar 

  28. Wycis HT, Spiegel EA. Treatment of certain types of chorea, athetosis and tremor by stereoencephalotomy. J Int Coll Surg. 1956;25(2 Pt 1):202–7.

    CAS  PubMed  Google Scholar 

  29. Blavier J, Blavier L. A case of Huntington’s chorea ameliorated by electrocoagulation of the globus pallidus. Rev Med Liege. 1962;17:218–23.

    CAS  PubMed  Google Scholar 

  30. Gioino GG, Dierssen G, Cooper IS. The effect os subcortical lesions on production and alleviation of hemiballic or hemichoreic movements. J Neurol Sci. 1966;3(1):10–36.

    Google Scholar 

  31. Mundinger F, Riechert T, Disselhoff J. Long term results of stereotaxic operations on extrapyramidal hyperkinesia (excluding parkinsonism). Confin Neurol. 1970;32(2):71–8.

    CAS  PubMed  Google Scholar 

  32. Andrew J, Edwards JM, Rudolf Nde M. The placement of stereotaxic lesions for involuntary movements other than in Parkinson’s disease. Acta Neurochir (Wien). 1974;Suppl 21:39–47 [Comparative Study].

    CAS  Google Scholar 

  33. Spiegel EA, Wycis HT. Thalamotomy and pallidotomy for treatment of choreic movements. Acta Neurochir (Wien). 1952;2(3–4):417–22.

    CAS  Google Scholar 

  34. Boixados JR. Pyramidotomy in the cerebral peduncle in treatment of choreo-athetosis. Rev Clin Esp. 1953;49(1):57–61.

    CAS  PubMed  Google Scholar 

  35. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50(1–6):344–6.

    CAS  PubMed  Google Scholar 

  36. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet. 1995;345(8942):91–5 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  37. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 1998;339(16):1105–11 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  38. Pahwa R, Wilkinson S, Smith D, Lyons K, Miyawaki E, Koller WC. High-frequency stimulation of the globus pallidus for the treatment of Parkinson’s disease. Neurology. 1997;49(1):249–53 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  39. Kumar R, Dagher A, Hutchison WD, Lang AE, Lozano AM. Globus pallidus deep brain stimulation for generalized dystonia: clinical and PET investigation. Neurology. 1999;53(4):871–4 [Case Reports Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  40. Krack P, Hariz MI, Baunez C, Guridi J, Obeso JA. Deep brain stimulation: from neurology to psychiatry? Trends Neurosci. 2010;33(10):474–84 [Research Support, Non-U.S. Gov’t Review].

    CAS  PubMed  Google Scholar 

  41. Peschanski M, Cesaro P, Hantraye P. Rationale for intrastriatal grafting of striatal neuroblasts in patients with Huntington’s disease. Neuroscience. 1995;68(2):273–85 [Research Support, Non-U.S. Gov’t Review].

    CAS  PubMed  Google Scholar 

  42. Harper SQ. Progress and challenges in RNA interference therapy for Huntington disease. Arch Neurol. 2009;66(8):933–8 [Research Support, Non-U.S. Gov’t Review].

    PubMed  Google Scholar 

  43. Cicchetti F, Soulet D, Freeman TB. Neuronal degeneration in striatal transplants and Huntington’s disease: potential mechanisms and clinical implications. Brain. 2011;134(Pt 3):641–52 [Research Support, Non-U.S. Gov’t Review].

    PubMed  Google Scholar 

  44. Govert F, Schneider SA. Huntington’s disease and Huntington’s disease-like syndromes: an overview. Curr Opin Neurol. 2013;26(4):420–7.

    PubMed  Google Scholar 

  45. Naito H, Oyanagi S. Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology. 1982;32(8):798–807 [Case Reports].

    CAS  PubMed  Google Scholar 

  46. Danek A, Walker RH. Neuroacanthocytosis. Curr Opin Neurol. 2005;18(4):386–92 [Review].

    PubMed  Google Scholar 

  47. Sempere AP, Aparicio S, Mola S, Perez-Tur J. Benign hereditary chorea: clinical features and long-term follow-up in a Spanish family. Parkinsonism Relat Disord. 2013;19(3):394–6 [Letter Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  48. Miyajima H. Aceruloplasminemia, an iron metabolic disorder. Neuropathology. 2003;23(4):345–50.

    PubMed  Google Scholar 

  49. Kubota A, Hida A, Ichikawa Y, Momose Y, Goto J, Igeta Y, et al. A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype-phenotype correlations. Mov Disord. 2009;24(3):441–5 [Case Reports Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  50. Walker RH. Update on the Non-Huntington’s Disease Choreas with Comments on the Current Nomenclature. Tremor Other Hyperkinet Mov (NY). 2012;2:1–7.

    Google Scholar 

  51. Wild EJ, Tabrizi SJ. The differential diagnosis of chorea. Pract Neurol. 2007;7(6):360–73 [Review].

    CAS  PubMed  Google Scholar 

  52. Edwards TC, Zrinzo L, Limousin P, Foltynie T. Deep brain stimulation in the treatment of chorea. Mov Disord. 2012;27(3):357–63 [Review].

    PubMed  Google Scholar 

  53. Zesiewicz TA, Sullivan KL. Drug-induced hyperkinetic movement disorders by nonneuroleptic agents. Handb Clin Neurol. 2011;100:347–63 [Review].

    PubMed  Google Scholar 

  54. Correll CU, Schenk EM. Tardive dyskinesia and new antipsychotics. Curr Opin Psychiatry. 2008;21(2):151–6 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed  Google Scholar 

  55. Piccolo I, Defanti CA, Soliveri P, Volonte MA, Cislaghi G, Girotti F. Cause and course in a series of patients with sporadic chorea. J Neurol. 2003;250(4):429–35.

    PubMed  Google Scholar 

  56. Vidakovic A, Dragasevic N, Kostic VS. Hemiballism: report of 25 cases. J Neurol Neurosurg Psychiatry. 1994;57(8):945–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Oh SH, Lee KY, Im JH, Lee MS. Chorea associated with non-ketotic hyperglycemia and hyperintensity basal ganglia lesion on T1-weighted brain MRI study: a meta-analysis of 53 cases including four present cases. J Neurol Sci. 2002;200(1–2):57–62 [Meta-Analysis Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  58. Hart DB. A Clinical Lecture on Two Cases of Chorea Gravidarum: delivered at the Extramural Class of Clinical Medicine in the Edinburgh Royal Infirmary. Br Med J. 1903;1(2194):126.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. O’Toole O, Lennon VA, Ahlskog JE, Matsumoto JY, Pittock SJ, Bower J, et al. Autoimmune chorea in adults. Neurology. 2013;80(12):1133–44.

    PubMed Central  PubMed  Google Scholar 

  60. Gelosa G, Tremolizzo L, Galbussera A, Perego R, Capra M, Frigo M, et al. Narrowing the window for ‘senile chorea’: a case with primary antiphospholipid syndrome. J Neurol Sci. 2009;284(1–2):211–3 [Case Reports].

    CAS  PubMed  Google Scholar 

  61. Tumas V, Caldas CT, Santos AC, Nobre A, Fernandes RM. Sydenham’s chorea: clinical observations from a Brazilian movement disorder clinic. Parkinsonism Relat Disord. 2007;13(5):276–83.

    PubMed  Google Scholar 

  62. Fekete R, Jankovic J. Psychogenic chorea associated with family history of Huntington disease. Mov Disord. 2010;25(4):503–4 [Case Reports Letter].

    PubMed  Google Scholar 

  63. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13(7):266–71 [Research Support, U.S. Gov’t, P.H.S. Review].

    CAS  PubMed  Google Scholar 

  64. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12(10):366–75 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    CAS  PubMed  Google Scholar 

  65. Berardelli A, Noth J, Thompson PD, Bollen EL, Curra A, Deuschl G, et al. Pathophysiology of chorea and bradykinesia in Huntington’s disease. Mov Disord. 1999;14(3):398–403 [Research Support, Non-U.S. Gov’t Review].

    CAS  PubMed  Google Scholar 

  66. Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A. 1988;85(15):5733–7 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Albin RL, Reiner A, Anderson KD, Penney JB, Young AB. Striatal and nigral neuron subpopulations in rigid Huntington’s disease: implications for the functional anatomy of chorea and rigidity-akinesia. Ann Neurol. 1990;27(4):357–65 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  68. Marsden CD, Obeso JA. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain. 1994;117(Pt 4):877–97 [Review].

    PubMed  Google Scholar 

  69. Thompson PD, Dick JP, Day BL, Rothwell JC, Berardelli A, Kachi T, et al. Electrophysiology of the corticomotoneurone pathways in patients with movement disorders. Mov Disord. 1986;1(2):113–7.

    CAS  PubMed  Google Scholar 

  70. Miller BR, Walker AG, Shah AS, Barton SJ, Rebec GV. Dysregulated information processing by medium spiny neurons in striatum of freely behaving mouse models of Huntington’s disease. J Neurophysiol. 2008;100(4):2205–16 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  71. Miller BR, Walker AG, Fowler SC, von Horsten S, Riess O, Johnson MA, et al. Dysregulation of coordinated neuronal firing patterns in striatum of freely behaving transgenic rats that model Huntington’s disease. Neurobiol Dis. 2010;37(1):106–13 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, DeLong MR, Olanow CW. Pathophysiology of levodopa-induced dyskinesias in Parkinson’s disease: problems with the current model. Ann Neurol. 2000;47(4 Suppl 1):S22–32; discussion S-4.

    CAS  PubMed  Google Scholar 

  73. Vitek JL, Chockkan V, Zhang JY, Kaneoke Y, Evatt M, DeLong MR, et al. Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol. 1999;46(1):22–35 [Case Reports Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  74. Matsumura M, Tremblay L, Richard H, Filion M. Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum. Neuroscience. 1995;65(1):59–70 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  75. Guridi J, Obeso JA. The subthalamic nucleus, hemiballismus and Parkinson’s disease: reappraisal of a neurosurgical dogma. Brain. 2001;124(Pt 1):5–19 [Review].

    CAS  PubMed  Google Scholar 

  76. Slavin KV, Baumann TK, Burchiel KJ. Treatment of hemiballismus with stereotactic pallidotomy. Case report and review of the literature. Neurosurg Focus. 2004;17(1):E7 [Case Reports Review].

    PubMed  Google Scholar 

  77. Vlamings R, Zeef DH, Janssen ML, Oosterloo M, Schaper F, Jahanshahi A, et al. Lessons learned from the transgenic Huntington’s disease rats. Neural Plast. 2012;2012:682712 [Research Support, Non-U.S. Gov’t Review].

    PubMed Central  PubMed  Google Scholar 

  78. Trottier Y, Biancalana V, Mandel JL. Instability of CAG repeats in Huntington’s disease: relation to parental transmission and age of onset. J Med Genet. 1994;31(5):377–82 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Hendricks AE, Latourelle JC, Lunetta KL, Cupples LA, Wheeler V, MacDonald ME, et al. Estimating the probability of de novo HD cases from transmissions of expanded penetrant CAG alleles in the Huntington disease gene from male carriers of high normal alleles (27-35 CAG). Am J Med Genet A. 2009;149A(7):1375–81 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Kieburtz K, MacDonald M, Shih C, Feigin A, Steinberg K, Bordwell K, et al. Trinucleotide repeat length and progression of illness in Huntington’s disease. J Med Genet. 1994;31(11):872–4 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed Central  PubMed  Google Scholar 

  81. MacDonald ME, Vonsattel JP, Shrinidhi J, Couropmitree NN, Cupples LA, Bird ED, et al. Evidence for the GluR6 gene associated with younger onset age of Huntington’s disease. Neurology. 1999;53(6):1330–2 [Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  82. Simonin C, Duru C, Salleron J, Hincker P, Charles P, Delval A, et al. Association between caffeine intake and age at onset in Huntington’s disease. Neurobiol Dis. 2013;58C:179–82.

    Google Scholar 

  83. Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N. The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord. 2012;27(9):1083–91 [Meta-Analysis Review].

    PubMed  Google Scholar 

  84. Quinn N, Schrag A. Huntington’s disease and other choreas. J Neurol. 1998;245(11):709–16 [Review].

    CAS  PubMed  Google Scholar 

  85. Craufurd D, Snowden J. Neuropsychological and neuropsychiatric aspects of Huntington’s disease. In: Bates G, Harper P, Jones L, editors. Huntington’s disease. New York: Oxford University Press; 2002. p. 62–94.

    Google Scholar 

  86. Di Maio L, Squitieri F, Napolitano G, Campanella G, Trofatter JA, Conneally PM. Suicide risk in Huntington’s disease. J Med Genet. 1993;30(4):293–5 [Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  87. Robins Wahlin TB, Backman L, Lundin A, Haegermark A, Winblad B, Anvret M. High suicidal ideation in persons testing for Huntington’s disease. Acta Neurol Scand. 2000;102(3):150–61 [Comparative Study Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  88. Farrer LA. Suicide and attempted suicide in Huntington disease: implications for preclinical testing of persons at risk. Am J Med Genet. 1986;24(2):305–11 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  89. Roos RA. Huntington’s disease: a clinical review. Orphanet J Rare Dis. 2010;5(1):40 [Review].

    PubMed Central  PubMed  Google Scholar 

  90. Mestre T, Ferreira J, Coelho MM, Rosa M, Sampaio C. Therapeutic interventions for disease progression in Huntington’s disease. Cochrane Database Syst Rev. 2009(3):CD006455. [Meta-Analysis Review].

    Google Scholar 

  91. Kumar A, Sharma N, Mishra J, Kalonia H. Synergistical neuroprotection of rofecoxib and statins against malonic acid induced Huntington’s disease like symptoms and related cognitive dysfunction in rats. Eur J Pharmacol. 2013;709(1–3):1–12 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  92. Sarantos MR, Papanikolaou T, Ellerby LM, Hughes RE. Pizotifen activates ERK and provides neuroprotection in vitro and in vivo in models of Huntington’s disease. J Huntingtons Dis. 2012;1(2):195–210.

    PubMed Central  PubMed  Google Scholar 

  93. Sagredo O, Pazos MR, Satta V, Ramos JA, Pertwee RG, Fernandez-Ruiz J. Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington’s disease. J Neurosci Res. 2011;89(9):1509–18 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  94. Wu J, Li Q, Bezprozvanny I. Evaluation of Dimebon in cellular model of Huntington’s disease. Mol Neurodegener. 2008;3:15.

    PubMed Central  PubMed  Google Scholar 

  95. HORIZON Investigators of the Huntington Study Group and European Huntington’s Disease Network. A randomized, double-blind, placebo-controlled study of latrepirdine in patients with mild to moderate Huntington disease. JAMA Neurol. 2013;70(1):25–33 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Google Scholar 

  96. O’Suilleabhain P, Dewey Jr RB. A randomized trial of amantadine in Huntington disease. Arch Neurol. 2003;60(7):996–8 [Clinical Trial Randomized Controlled Trial].

    PubMed  Google Scholar 

  97. Huntington Study Group. Dosage effects of riluzole in Huntington’s disease: a multicenter placebo-controlled study. Neurology. 2003;61(11):1551–6 [Clinical Trial Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Google Scholar 

  98. Curtis A, Mitchell I, Patel S, Ives N, Rickards H. A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov Disord. 2009;24(15):2254–9 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  99. Bonelli RM, Wenning GK. Pharmacological management of Huntington’s disease: an evidence-based review. Curr Pharm Des. 2006;12(21):2701–20 [Review].

    CAS  PubMed  Google Scholar 

  100. Armstrong MJ, Miyasaki JM. Evidence-based guideline: pharmacologic treatment of chorea in Huntington disease: report of the guideline development subcommittee of the American Academy of Neurology. Neurology. 2012;79(6):597–603 [Practice Guideline Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  101. Reilmann R. Pharmacological treatment of chorea in Huntington’s disease-good clinical practice versus evidence-based guideline. Mov Disord. 28(8):1030–3.

    Google Scholar 

  102. Brusa L, Versace V, Koch G, Bernardi G, Iani C, Stanzione P, et al. Improvement of choreic movements by 1 Hz repetitive transcranial magnetic stimulation in Huntington’s disease patients. Ann Neurol. 2005;58(4):655–6 [Clinical Trial Comparative Study Letter].

    PubMed  Google Scholar 

  103. Joel D, Ayalon L, Tarrasch R, Veenman L, Feldon J, Weiner I. Electrolytic lesion of globus pallidus ameliorates the behavioral and neurodegenerative effects of quinolinic acid lesion of the striatum: a potential novel treatment in a rat model of Huntington’s disease. Brain Res. 1998;787(1):143–8 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  104. Joel D, Ayalon L, Tarrasch R, Weiner I. Deficits induced by quinolinic acid lesion to the striatum in a position discrimination and reversal task are ameliorated by permanent and temporary lesion to the globus pallidus: a potential novel treatment in a rat model of Huntington’s disease. Mov Disord. 2003;18(12):1499–507 [Evaluation Studies].

    PubMed  Google Scholar 

  105. Ayalon L, Doron R, Weiner I, Joel D. Amelioration of behavioral deficits in a rat model of Huntington’s disease by an excitotoxic lesion to the globus pallidus. Exp Neurol. 2004;186((1):46–58 [Comparative Study].

    Google Scholar 

  106. Cubo E, Shannon KM, Penn RD, Kroin JS. Internal globus pallidotomy in dystonia secondary to Huntington’s disease. Mov Disord. 2000;15(6):1248–51 [Case Reports].

    CAS  PubMed  Google Scholar 

  107. Lozano AM, Kumar R, Gross RE, Giladi N, Hutchison WD, Dostrovsky JO, et al. Globus pallidus internus pallidotomy for generalized dystonia. Mov Disord. 1997;12(6):865–70 [Case Reports Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  108. Moro E, Lang AE, Strafella AP, Poon YY, Arango PM, Dagher A, et al. Bilateral globus pallidus stimulation for Huntington’s disease. Ann Neurol. 2004;56(2):290–4 [Comparative Study].

    PubMed  Google Scholar 

  109. Lang AE, Lozano AM, Montgomery E, Duff J, Tasker R, Hutchinson W. Posteroventral medial pallidotomy in advanced Parkinson’s disease. N Engl J Med. 1997;337(15):1036–42 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  110. Weeks RA, Ceballos-Baumann A, Piccini P, Boecker H, Harding AE, Brooks DJ. Cortical control of movement in Huntington’s disease. A PET activation study. Brain. 1997;120(Pt 9):1569–78 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  111. Fawcett AP, Moro E, Lang AE, Lozano AM, Hutchison WD. Pallidal deep brain stimulation influences both reflexive and voluntary saccades in Huntington’s disease. Mov Disord. 2005;20(3):371–7 [Case Reports Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  112. Hebb MO, Garcia R, Gaudet P, Mendez IM. Bilateral stimulation of the globus pallidus internus to treat choreathetosis in Huntington’s disease: technical case report. Neurosurgery. 2006;58(2):E383; discussion E.

    PubMed  Google Scholar 

  113. Tang JK, Moro E, Lozano AM, Lang AE, Hutchison WD, Mahant N, et al. Firing rates of pallidal neurons are similar in Huntington’s and Parkinson’s disease patients. Exp Brain Res. 2005;166(2):230–6 [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  114. Biolsi B, Cif L, Fertit HE, Robles SG, Coubes P. Long-term follow-up of Huntington disease treated by bilateral deep brain stimulation of the internal globus pallidus. J Neurosurg. 2008;109(1):130–2 [Case Reports].

    PubMed  Google Scholar 

  115. Fasano A, Mazzone P, Piano C, Quaranta D, Soleti F, Bentivoglio AR. GPi-DBS in Huntington’s disease: results on motor function and cognition in a 72-year-old case. Mov Disord. 2008;23(9):1289–92 [Case Reports Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  116. Kang GA, Heath S, Rothlind J, Starr PA. Long-term follow-up of pallidal deep brain stimulation in two cases of Huntington’s disease. J Neurol Neurosurg Psychiatry. 2011;82(3):272–7 [Case Reports Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  117. Starr PA, Kang GA, Heath S, Shimamoto S, Turner RS. Pallidal neuronal discharge in Huntington’s disease: support for selective loss of striatal cells originating the indirect pathway. Exp Neurol. 2008;211(1):227–33 [Clinical Trial Comparative Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Groiss SJ, Elben S, Reck C, Voges J, Wojtecki L, Schnitzler A. Local field potential oscillations of the globus pallidus in Huntington’s disease. Mov Disord. 2011;26(14):2577–8 [Case Reports Letter Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  119. Silberstein P, Kuhn AA, Kupsch A, Trottenberg T, Krauss JK, Wohrle JC, et al. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain. 2003;126(Pt 12):2597–608 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  120. Brown P. Cortical drives to human muscle: the Piper and related rhythms. Prog Neurobiol. 2000;60(1):97–108 [Research Support, Non-U.S. Gov’t Review].

    CAS  PubMed  Google Scholar 

  121. Garcia-Ruiz PJ, Ayerbe J, del Val J, Herranz A. Deep brain stimulation in disabling involuntary vocalization associated with Huntington’s disease. Parkinsonism Relat Disord. 2012;18(6):803–4 [Case Reports Letter Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  122. Spielberger S, Hotter A, Wolf E, Eisner W, Muller J, Poewe W, et al. Deep brain stimulation in Huntington’s disease: a 4-year follow-up case report. Mov Disord. 2012;27(6):806–7; author reply 7–8 [Comment Letter].

    PubMed  Google Scholar 

  123. Velez-Lago FM, Thompson A, Oyama G, Hardwick A, Sporrer JM, Zeilman P, et al. Differential and better response to deep brain stimulation of chorea compared to dystonia in Huntington’s disease. Stereotact Funct Neurosurg. 2013;91(2):129–33.

    PubMed  Google Scholar 

  124. Reiner A. Can lesions of GPe correct HD deficits? Exp Neurol. 2004;186(1):1–5 [Letter].

    CAS  PubMed  Google Scholar 

  125. Temel Y, Cao C, Vlamings R, Blokland A, Ozen H, Steinbusch HW, et al. Motor and cognitive improvement by deep brain stimulation in a transgenic rat model of Huntington’s disease. Neurosci Lett. 2006;406(1–2):138–41 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  126. Ligot N, Krystkowiak P, Simonin C, Goldman S, Peigneux P, Van Naemen J, et al. External globus pallidus stimulation modulates brain connectivity in Huntington’s disease. J Cereb Blood Flow Metab. 2011;31(1):41–6 [Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  127. Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR, Roos RA, et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol. 2013;12(7):637–49.

    PubMed  Google Scholar 

  128. Rieke GK, Scarfe AD, Hunter JF. L-pyroglutamate: an alternate neurotoxin for a rodent model of Huntington’s disease. Brain Res Bull. 1984;13(3):443–56 [Comparative Study].

    CAS  PubMed  Google Scholar 

  129. Coyle JT, Schwarcz R. Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature. 1976;263(5574):244–6 [Research Support, U.S. Gov’t, Non-P.H.S.].

    CAS  PubMed  Google Scholar 

  130. Coyle JT, Schwarcz R, Bennett JP, Campochiaro P. Clinical, neuropathologic and pharmacologic aspects of Huntington’s disease: correlates with a new animal model. Prog Neuropsychopharmacol. 1977;1(1–2):13–30 [Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  131. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87(3):493–506 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  132. von Horsten S, Schmitt I, Nguyen HP, Holzmann C, Schmidt T, Walther T, et al. Transgenic rat model of Huntington’s disease. Hum Mol Genet. 2003;12(6):617–24 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Google Scholar 

  133. Deckel AW, Robinson RG, Coyle JT, Sanberg PR. Reversal of long-term locomotor abnormalities in the kainic acid model of Huntington’s disease by day 18 fetal striatal implants. Eur J Pharmacol. 1983;93(3–4):287–8 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  134. Isacson O, Brundin P, Gage FH, Bjorklund A. Neural grafting in a rat model of Huntington’s disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Neuroscience. 1985;16(4):799–817 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  135. Isacson O, Riche D, Hantraye P, Sofroniew MV, Maziere M. A primate model of Huntington’s disease: cross-species implantation of striatal precursor cells to the excitotoxically lesioned baboon caudate-putamen. Exp Brain Res. 1989;75(1):213–20 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  136. Hantraye P, Riche D, Maziere M, Isacson O. Intrastriatal transplantation of cross-species fetal striatal cells reduces abnormal movements in a primate model of Huntington disease. Proc Natl Acad Sci U S A. 1992;89(9):4187–91 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Dunnett SB, Carter RJ, Watts C, Torres EM, Mahal A, Mangiarini L, et al. Striatal transplantation in a transgenic mouse model of Huntington’s disease. Exp Neurol. 1998;154(1):31–40 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  138. Sadan O, Shemesh N, Barzilay R, Dadon-Nahum M, Blumenfeld-Katzir T, Assaf Y, et al. Mesenchymal stem cells induced to secrete neurotrophic factors attenuate quinolinic acid toxicity: a potential therapy for Huntington’s disease. Exp Neurol. 2012;234(2):417–27 [Research Support, Non- .S. Gov’t].

    CAS  PubMed  Google Scholar 

  139. Yang CR, Yu RK. Intracerebral transplantation of neural stem cells combined with trehalose ingestion alleviates pathology in a mouse model of Huntington’s disease. J Neurosci Res. 2009;87(1):26–33 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Lee ST, Chu K, Jung KH, Im WS, Park JE, Lim HC, et al. Slowed progression in models of Huntington disease by adipose stem cell transplantation. Ann Neurol. 2009;66(5):671–81 [Comparative Study Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  141. Snyder BR, Chiu AM, Prockop DJ, Chan AW. Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington’s disease. PLoS One. 2010;5(2):e9347 [Research Support, N.I.H., Extramural].

    PubMed Central  PubMed  Google Scholar 

  142. Kwan W, Magnusson A, Chou A, Adame A, Carson MJ, Kohsaka S, et al. Bone marrow transplantation confers modest benefits in mouse models of Huntington’s disease. J Neurosci. 2012;32(1):133–42 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Emerich DF, Winn SR. Neuroprotective effects of encapsulated CNTF-producing cells in a rodent model of Huntington’s disease are dependent on the proximity of the implant to the lesioned striatum. Cell Transplant. 2004;13(3):253–9.

    PubMed  Google Scholar 

  144. Giralt A, Friedman HC, Caneda-Ferron B, Urban N, Moreno E, Rubio N, et al. BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington’s disease. Gene Ther. 2010;17(10):1294–308 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  145. Madrazo I, Franco-Bourland RE, Castrejon H, Cuevas C, Ostrosky-Solis F. Fetal striatal homotransplantation for Huntington’s disease: first two case reports. Neurol Res. 1995;17(4):312–5 [Case Reports Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  146. Philpott LM, Kopyov OV, Lee AJ, Jacques S, Duma CM, Caine S, et al. Neuropsychological functioning following fetal striatal transplantation in Huntington’s chorea: three case presentations. Cell Transplant. 1997;6(3):203–12 [Case Reports].

    CAS  PubMed  Google Scholar 

  147. Kopyov OV, Jacques S, Lieberman A, Duma CM, Eagle KS. Safety of intrastriatal neurotransplantation for Huntington’s disease patients. Exp Neurol. 1998;149(1):97–108 [Case Reports Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  148. Fink JS, Schumacher JM, Ellias SL, Palmer EP, Saint-Hilaire M, Shannon K, et al. Porcine xenografts in Parkinson’s disease and Huntington’s disease patients: preliminary results. Cell Transplant. 2000;9(2):273–8 [Clinical Trial Clinical Trial, Phase I].

    CAS  PubMed  Google Scholar 

  149. Bachoud-Levi A, Bourdet C, Brugieres P, Nguyen JP, Grandmougin T, Haddad B, et al. Safety and tolerability assessment of intrastriatal neural allografts in five patients with Huntington’s disease. Exp Neurol. 2000;161(1):194–202 [Clinical Trial Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  150. Bachoud-Levi AC, Remy P, Nguyen JP, Brugieres P, Lefaucheur JP, Bourdet C, et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet. 2000;356(9246):1975–9 [Clinical Trial Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  151. Bachoud-Levi AC, Gaura V, Brugieres P, Lefaucheur JP, Boisse MF, Maison P, et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol. 2006;5(4):303–9 [Clinical Trial Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  152. Hauser RA, Sandberg PR, Freeman TB, Stoessl AJ. Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology. 2002;58(11):1704; author reply.

    PubMed  Google Scholar 

  153. Rosser AE, Barker RA, Harrower T, Watts C, Farrington M, Ho AK, et al. Unilateral transplantation of human primary fetal tissue in four patients with Huntington’s disease: NEST-UK safety report ISRCTN no 36485475. J Neurol Neurosurg Psychiatry. 2002;73(6):678–85 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Keene CD, Sonnen JA, Swanson PD, Kopyov O, Leverenz JB, Bird TD, et al. Neural transplantation in Huntington disease: long-term grafts in two patients. Neurology. 2007;68(24):2093–8 [Case Reports Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    CAS  PubMed  Google Scholar 

  155. Reuter I, Tai YF, Pavese N, Chaudhuri KR, Mason S, Polkey CE, et al. Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington’s disease. J Neurol Neurosurg Psychiatry. 2008;79(8):948–51 [Controlled Clinical Trial Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  156. Gallina P, Paganini M, Lombardini L, Saccardi R, Marini M, De Cristofaro MT, et al. Development of human striatal anlagen after transplantation in a patient with Huntington’s disease. Exp Neurol. 2008;213(1):241–4 [Clinical Trial].

    PubMed  Google Scholar 

  157. Cicchetti F, Saporta S, Hauser RA, Parent M, Saint-Pierre M, Sanberg PR, et al. Neural transplants in patients with Huntington’s disease undergo disease-like neuronal degeneration. Proc Natl Acad Sci U S A. 2009;106(30):12483–8 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Gallina P, Paganini M, Lombardini L, Mascalchi M, Porfirio B, Gadda D, et al. Human striatal neuroblasts develop and build a striatal-like structure into the brain of Huntington’s disease patients after transplantation. Exp Neurol. 2010;222(1):30–41 [Clinical Trial].

    PubMed  Google Scholar 

  159. Barker RA, Mason SL, Harrower TP, Swain RA, Ho AK, Sahakian BJ, et al. The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington’s disease. J Neurol Neurosurg Psychiatry. 2013;84(6):657–65 [Clinical Trial Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  160. Cisbani G, Freeman TB, Soulet D, Saint-Pierre M, Gagnon D, Parent M, et al. Striatal allografts in patients with Huntington’s disease: impact of diminished astrocytes and vascularization on graft viability. Brain. 2013;136(Pt 2):433–43 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  161. Freeman TB, Cicchetti F, Bachoud-Levi AC, Dunnett SB. Technical factors that influence neural transplant safety in Huntington’s disease. Exp Neurol. 2011;227(1):1–9.

    CAS  PubMed  Google Scholar 

  162. Bachoud-Levi AC. Neural grafts in Huntington’s disease: viability after 10 years. Lancet Neurol. 2009;8(11):979–81 [Letter].

    PubMed  Google Scholar 

  163. van Dellen A, Deacon R, York D, Blakemore C, Hannan AJ. Anterior cingulate cortical transplantation in transgenic Huntington’s disease mice. Brain Res Bull. 2001;56(3–4):313–8 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  164. Alberch J, Perez-Navarro E, Canals JM. Neurotrophic factors in Huntington’s disease. Prog Brain Res. 2004;146:195–229 [Research Support, Non-U.S. Gov’t Review].

    CAS  PubMed  Google Scholar 

  165. Alderson RF, Alterman AL, Barde YA, Lindsay RM. Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron. 1990;5(3):297–306.

    CAS  PubMed  Google Scholar 

  166. Snider WD. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell. 1994;77(5):627–38 [Review].

    PubMed  Google Scholar 

  167. Fischer W, Wictorin K, Bjorklund A, Williams LR, Varon S, Gage FH. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature. 1987;329(6134):65–8 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  168. Emerich DF, Winn SR, Hantraye PM, Peschanski M, Chen EY, Chu Y, et al. Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature. 1997;386(6623):395–9 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  169. Bjorklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, Mandel RJ. Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res. 2000;886(1–2):82–98 [Research Support, Non-U.S. Gov’t Review].

    CAS  PubMed  Google Scholar 

  170. Demeestere J, Vandenberghe W. Experimental surgical therapies for Huntington’s disease. CNS Neurosci Ther. 2011;17(6):705–13 [Research Support, Non-U.S. Gov’t Review].

    PubMed  Google Scholar 

  171. Tornoe J, Torp M, Jorgensen JR, Emerich DF, Thanos C, Bintz B, et al. Encapsulated cell-based biodelivery of meteorin is neuroprotective in the quinolinic acid rat model of neurodegenerative disease. Restor Neurol Neurosci. 2012;30(3):225–36 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  172. Emerich DF, Cain CK, Greco C, Saydoff JA, Hu ZY, Liu H, et al. Cellular delivery of human CNTF prevents motor and cognitive dysfunction in a rodent model of Huntington’s disease. Cell Transplant. 1997;6(3):249–66.

    CAS  PubMed  Google Scholar 

  173. Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, et al. Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res. 2010;214(2):193–200 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  174. Schumacher JM, Short MP, Hyman BT, Breakefield XO, Isacson O. Intracerebral implantation of nerve growth factor-producing fibroblasts protects striatum against neurotoxic levels of excitatory amino acids. Neuroscience. 1991;45(3):561–70 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  175. Ebert AD, Barber AE, Heins BM, Svendsen CN. Ex vivo delivery of GDNF maintains motor function and prevents neuronal loss in a transgenic mouse model of Huntington’s disease. Exp Neurol. 2010;224(1):155–62 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  176. Mittoux V, Joseph JM, Conde F, Palfi S, Dautry C, Poyot T, et al. Restoration of cognitive and motor functions by ciliary neurotrophic factor in a primate model of Huntington’s disease. Hum Gene Ther. 2000;11(8):1177–87 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  177. Bachoud-Levi AC, Deglon N, Nguyen JP, Bloch J, Bourdet C, Winkel L, et al. Neuroprotective gene therapy for Huntington’s disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF. Hum Gene Ther. 2000;11(12):1723–9 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  178. Bloch J, Bachoud-Levi AC, Deglon N, Lefaucheur JP, Winkel L, Palfi S, et al. Neuroprotective gene therapy for Huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther. 2004;15(10):968–75 [Clinical Trial Clinical Trial, Phase I Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  179. Altar CA, Armanini M, Dugich-Djordjevic M, Bennett GL, Williams R, Feinglass S, et al. Recovery of cholinergic phenotype in the injured rat neostriatum: roles for endogenous and exogenous nerve growth factor. J Neurochem. 1992;59(6):2167–77.

    CAS  PubMed  Google Scholar 

  180. Davies SW, Beardsall K. Nerve growth factor selectively prevents excitotoxin induced degeneration of striatal cholinergic neurones. Neurosci Lett. 1992;140(2):161–4 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  181. Araujo DM, Hilt DC. Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington’s disease. Neuroscience. 1997;81(4):1099–110.

    CAS  PubMed  Google Scholar 

  182. Ramaswamy S, Kordower JH. Gene therapy for Huntington’s disease. Neurobiol Dis. 2012;48(2):243–54 [Review].

    CAS  PubMed  Google Scholar 

  183. de Almeida LP, Zala D, Aebischer P, Deglon N. Neuroprotective effect of a CNTF-expressing lentiviral vector in the quinolinic acid rat model of Huntington’s disease. Neurobiol Dis. 2001;8(3):433–46 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  184. Ramaswamy S, McBride JL, Han I, Berry-Kravis EM, Zhou L, Herzog CD, et al. Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington’s disease. Neurobiol Dis. 2009;34(1):40–50 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  185. Jorgensen JR, Emerich DF, Thanos C, Thompson LH, Torp M, Bintz B, et al. Lentiviral delivery of meteorin protects striatal neurons against excitotoxicity and reverses motor deficits in the quinolinic acid rat model. Neurobiol Dis. 2011;41(1):160–8 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  186. Arregui L, Benitez JA, Razgado LF, Vergara P, Segovia J. Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cell Mol Neurobiol. 2011;31(8):1229–43 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  187. Denovan-Wright EM, Attis M, Rodriguez-Lebron E, Mandel RJ. Sustained striatal ciliary neurotrophic factor expression negatively affects behavior and gene expression in normal and R6/1 mice. J Neurosci Res. 2008;86(8):1748–57 [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  188. Regulier E, Pereira-de-Almeida L, Sommer B, Aebischer P, Deglon N. Dose-dependent neuroprotective effect of ciliary neurotrophic factor delivered via tetracycline-regulated lentiviral vectors in the quinolinic acid rat model of Huntington’s disease. Hum Gene Ther. 2002;13(16):1981–90 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  189. Ellison SM, Trabalza A, Tisato V, Pazarentzos E, Lee S, Papadaki V, et al. Dose-dependent Neuroprotection of VEGF in Huntington’s Disease Striatum. Mol Ther. 2013;21(10):1862–75.

    Google Scholar 

  190. Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A. 2005;102(16):5820–5 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ. Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther. 2005;12(4):618–33 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Zuleta A, Vidal RL, Armentano D, Parsons G, Hetz C. AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington’s disease. Biochem Biophys Res Commun. 2012;420(3):558–63 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  193. Wang YL, Liu W, Wada E, Murata M, Wada K, Kanazawa I. Clinico-pathological rescue of a model mouse of Huntington’s disease by siRNA. Neurosci Res. 2005;53(3):241–9 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  194. Southwell AL, Khoshnan A, Dunn DE, Bugg CW, Lo DC, Patterson PH. Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity. J Neurosci. 2008;28(36):9013–20 [In Vitro Research Support, Non-U.S. Gov’t].

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Wang CE, Zhou H, McGuire JR, Cerullo V, Lee B, Li SH, et al. Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J Cell Biol. 2008;181(5):803–16 [Research Support, N.I.H., Extramural].

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Boado RJ, Kazantsev A, Apostol BL, Thompson LM, Pardridge WM. Antisense-mediated down-regulation of the human huntingtin gene. J Pharmacol Exp Ther. 2000;295(1):239–43 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  197. Haque N, Isacson O. Antisense gene therapy for neurodegenerative disease? Exp Neurol. 1997;144(1):139–46 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  198. Bassen FA, Kornzweig AL. Malformation of the erythrocytes in a case of atypical retinitis pigmentosa. Blood. 1950;5(4):381–7.

    CAS  PubMed  Google Scholar 

  199. Critchley EM, Clark DB, Wikler A. Acanthocytosis and neurological disorder without betalipoproteinemia. Arch Neurol. 1968;18(2):134–40.

    CAS  PubMed  Google Scholar 

  200. Levine IM, Estes JW, Looney JM. Hereditary neurological disease with acanthocytosis. A new syndrome. Arch Neurol. 1968;19(4):403–9.

    CAS  PubMed  Google Scholar 

  201. Yamamoto T, Hirose G, Shimazaki K, Takado S, Kosoegawa H, Saeki M. Movement disorders of familial neuroacanthocytosis syndrome. Arch Neurol. 1982;39(5):298–301 [Case Reports].

    CAS  PubMed  Google Scholar 

  202. Hardie RJ, Pullon HW, Harding AE, Owen JS, Pires M, Daniels GL, et al. Neuroacanthocytosis. A clinical, haematological and pathological study of 19 cases. Brain. 1991;114(Pt 1A):13–49 [Case Reports Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  203. Edwards M, Quinn N, Bhatia K, editors. Parkinson’s disease and other movement disorders. New York: Oxford University Press; 2008.

    Google Scholar 

  204. Vital A, Bouillot S, Burbaud P, Ferrer X, Vital C. Chorea-acanthocytosis: neuropathology of brain and peripheral nerve. Clin Neuropathol. 2002;21(2):77–81 [Case Reports].

    CAS  PubMed  Google Scholar 

  205. Muller-Vahl KR, Berding G, Emrich HM, Peschel T. Chorea-acanthocytosis in monozygotic twins: clinical findings and neuropathological changes as detected by diffusion tensor imaging, FDG-PET and (123)I-beta-CIT-SPECT. J Neurol. 2007;254(8):1081–8 [Case Reports].

    PubMed  Google Scholar 

  206. Saiki S, Sakai K, Kitagawa Y, Saiki M, Kataoka S, Hirose G. Mutation in the CHAC gene in a family of autosomal dominant chorea-acanthocytosis. Neurology. 2003;61(11):1614–6 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  207. Rubio JP, Danek A, Stone C, Chalmers R, Wood N, Verellen C, et al. Chorea-acanthocytosis: genetic linkage to chromosome 9q21. Am J Hum Genet. 1997;61(4):899–908 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Ueno S, Maruki Y, Nakamura M, Tomemori Y, Kamae K, Tanabe H, et al. The gene encoding a newly discovered protein, chorein, is mutated in chorea-acanthocytosis. Nat Genet. 2001;28(2):121–2 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  209. Walker RH, Jung HH, Dobson-Stone C, Rampoldi L, Sano A, Tison F, et al. Neurologic phenotypes associated with acanthocytosis. Neurology. 2007;68(2):92–8 [Meta-Analysis Review].

    CAS  PubMed  Google Scholar 

  210. Bader B, Walker RH, Vogel M, Prosiegel M, McIntosh J, Danek A. Tongue protrusion and feeding dystonia: a hallmark of chorea-acanthocytosis. Mov Disord. 2010;25(1):127–9 [Case Reports Letter].

    PubMed  Google Scholar 

  211. Al-Asmi A, Jansen AC, Badhwar A, Dubeau F, Tampieri D, Shustik C, et al. Familial temporal lobe epilepsy as a presenting feature of choreoacanthocytosis. Epilepsia. 2005;46(8):1256–63 [Case Reports Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  212. Jung HH, Danek A, Walker RH. Neuroacanthocytosis syndromes. Orphanet J Rare Dis. 2011;6:68 [Review].

    PubMed Central  PubMed  Google Scholar 

  213. Rampoldi L, Danek A, Monaco AP. Clinical features and molecular bases of neuroacanthocytosis. J Mol Med (Berl). 2002;80(8):475–91 [Research Support, Non-U.S. Gov’t Review].

    CAS  Google Scholar 

  214. Margolis RL, Holmes SE, Rosenblatt A, Gourley L, O’Hearn E, Ross CA, et al. Huntington’s disease-like 2 (HDL2) in North America and Japan. Ann Neurol. 2004;56(5):670–4 [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  215. Fujimoto Y, Isozaki E, Yokochi F, Yamakawa K, Takahashi H, Hirai S. A case of chorea-acanthocytosis successfully treated with posteroventral pallidotomy. Rinsho Shinkeigaku. 1997;37(10):891–4 [Case Reports].

    CAS  PubMed  Google Scholar 

  216. Wihl G, Volkmann J, Allert N, Lehrke R, Sturm V, Freund HJ. Deep brain stimulation of the internal pallidum did not improve chorea in a patient with neuro-acanthocytosis. Mov Disord. 2001;16(3):572–5 [Case Reports].

    CAS  PubMed  Google Scholar 

  217. Burbaud P, Rougier A, Ferrer X, Guehl D, Cuny E, Arne P, et al. Improvement of severe trunk spasms by bilateral high-frequency stimulation of the motor thalamus in a patient with chorea-acanthocytosis. Mov Disord. 2002;17(1):204–7 [Case Reports].

    PubMed  Google Scholar 

  218. Burbaud P, Vital A, Rougier A, Bouillot S, Guehl D, Cuny E, et al. Minimal tissue damage after stimulation of the motor thalamus in a case of chorea-acanthocytosis. Neurology. 2002;59(12):1982–4 [Case Reports].

    CAS  PubMed  Google Scholar 

  219. Guehl D, Cuny E, Tison F, Benazzouz A, Bardinet E, Sibon Y, et al. Deep brain pallidal stimulation for movement disorders in neuroacanthocytosis. Neurology. 2007;68(2):160–1 [Case Reports].

    CAS  PubMed  Google Scholar 

  220. Ruiz PJ, Ayerbe J, Bader B, Danek A, Sainz MJ, Cabo I, et al. Deep brain stimulation in chorea acanthocytosis. Mov Disord. 2009;24(10):1546–7 [Letter Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  221. Shin H, Ki CS, Cho AR, Lee JI, Ahn JY, Lee JH, et al. Globus pallidus interna deep brain stimulation improves chorea and functional status in a patient with chorea-acanthocytosis. Stereotact Funct Neurosurg. 2012;90(4):273–7 [Case Reports].

    PubMed  Google Scholar 

  222. Li P, Huang R, Song W, Ji J, Burgunder JM, Wang X, et al. Deep brain stimulation of the globus pallidus internal improves symptoms of chorea-acanthocytosis. Neurol Sci. 2012;33(2):269–74 [Case Reports].

    CAS  PubMed  Google Scholar 

  223. Kefalopoulou Z, Zrinzo L, Aviles-Olmos I, Bhatia K, Jarman P, Jahanshahi M, et al. Deep brain stimulation as a treatment for chorea-acanthocytosis. J Neurol. 2013;260(1):303–5 [Case Reports Letter].

    PubMed  Google Scholar 

  224. Lim TT, Fernandez HH, Cooper S, Wilson KM, Machado AG. Successful deep brain stimulation surgery with intraoperative magnetic resonance imaging on a difficult neuroacanthocytosis case: case report. Neurosurgery. 2013;73(1):E184–8.

    PubMed  Google Scholar 

  225. Shannon KR. Ballism. In: Jankovic J, Tolosa E, editors. Parkinson’s disease and movement disorders. 3rd ed. Baltimore: Williams and Wilkins; 1998. p. 365–75.

    Google Scholar 

  226. Lee MS, Marsden CD. Movement disorders following lesions of the thalamus or subthalamic region. Mov Disord. 1994;9(5):493–507 [Review].

    CAS  PubMed  Google Scholar 

  227. Lin JJ, Chang MK. Hemiballism-hemichorea and non-ketotic hyperglycaemia. J Neurol Neurosurg Psychiatry. 1994;57(6):748–50 [Case Reports Review].

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Miao J, Liu R, Li J, Du Y, Zhang W, Li Z. Meige’s syndrome and hemichorea associated with hyperthyroidism. J Neurol Sci. 2010;288(1–2):175–7 [Case Reports].

    PubMed  Google Scholar 

  229. el Maghraoui A, Birouk N, Zaim A, Slassi I, Yahyaoui M, Chkili T. Fahr syndrome and dysparathyroidism. 3 cases. Presse Med. 1995;24(28):1301–4 [Case Reports].

    PubMed  Google Scholar 

  230. Morre HH, van Woerkom TC, Endtz LJ. A case of chorea due to polycythaemia vera. Clin Neurol Neurosurg. 1982;84(2):125–30 [Case Reports].

    CAS  PubMed  Google Scholar 

  231. Parikh S, Swaiman KF, Kim Y. Neurologic characteristics of childhood lupus erythematosus. Pediatr Neurol. 1995;13(3):198–201.

    CAS  PubMed  Google Scholar 

  232. Alakandy LM, Iyer RV, Golash A. Hemichorea, an unusual complication of ventriculoperitoneal shunt. J Clin Neurosci. 2008;15(5):599–601 [Case Reports Review].

    PubMed  Google Scholar 

  233. Buge A, Vincent D, Rancurel G, Cheron F. Hemichorea and oral contraceptives. Rev Neurol (Paris). 1985;141(10):663–5 [Case Reports].

    CAS  Google Scholar 

  234. Dike GL. Chorea gravidarum: a case report and review. Md Med J. 1997;46(8):436–9 [Case Reports Review].

    CAS  PubMed  Google Scholar 

  235. Gastaut JL, Nicoli F, Somma-Mauvais H, Bartolomei F, Dalecky A, Bruzzo M, et al. Hemichorea-hemiballismus and toxoplasmosis in AIDS. Rev Neurol (Paris). 1992;148(12):785–8 [Case Reports].

    CAS  Google Scholar 

  236. Dewey Jr RB, Jankovic J. Hemiballism-hemichorea. Clinical and pharmacologic findings in 21 patients. Arch Neurol. 1989;46(8):862–7.

    PubMed  Google Scholar 

  237. Borremans JJ, Krauss JK, Fanardjian RV, Seeger W. Hemichorea-hemiballism associated with an ipsilateral intraventricular cyst after resection of a meningioma. Parkinsonism Relat Disord. 1996;2(3):155–9.

    CAS  PubMed  Google Scholar 

  238. Krauss JK, Borremans JJ, Nobbe F, Mundinger F. Ballism not related to vascular disease: a report of 16 patients and review of the literature. Parkinsonism Relat Disord. 1996;2(1):35–45.

    CAS  PubMed  Google Scholar 

  239. Ghika-Schmid F, Ghika J, Regli F, Bogousslavsky J. Hyperkinetic movement disorders during and after acute stroke: the Lausanne Stroke Registry. J Neurol Sci. 1997;146(2):109–16.

    CAS  PubMed  Google Scholar 

  240. Becker RE, Lal H. Pharmacological approaches to treatment of hemiballism and hemichorea. Brain Res Bull. 1983;11(2):187–9 [Review].

    CAS  PubMed  Google Scholar 

  241. Evidente VG, Gwinn-Hardy K, Caviness JN, Alder CH. Risperidone is effective in severe hemichorea/hemiballismus. Mov Disord. 1999;14(2):377–9 [Case Reports].

    CAS  PubMed  Google Scholar 

  242. Safirstein B, Shulman LM, Weiner WJ. Successful treatment of hemichorea with olanzapine. Mov Disord. 1999;14(3):532–3 [Case Reports].

    CAS  PubMed  Google Scholar 

  243. Emre M, Landis T. Haloperidol in hemichorea-hemiballismus. J Neurol. 1984;231(5):280 [Case Reports Letter].

    CAS  PubMed  Google Scholar 

  244. Bashir K, Manyam BV. Clozapine for the control of hemiballismus. Clin Neuropharmacol. 1994;17(5):477–80 [Case Reports].

    CAS  PubMed  Google Scholar 

  245. Hernandez-Latorre MA, Roig-Quilis M. The efficiency of carbamazepine in a case of post-streptococcal hemichorea. Rev Neurol. 2003;37(4):322–6 [Case Reports].

    CAS  PubMed  Google Scholar 

  246. Kothare SV, Pollack P, Kulberg AG, Ravin PD. Gabapentin treatment in a child with delayed-onset hemichorea/hemiballismus. Pediatr Neurol. 2000;22(1):68–71 [Case Reports].

    CAS  PubMed  Google Scholar 

  247. Gatto EM, Uribe Roca C, Raina G, Gorja M, Folgar S, Micheli FE. Vascular hemichorea/hemiballism and topiramate. Mov Disord. 2004;19(7):836–8 [Case Reports].

    PubMed  Google Scholar 

  248. Di Lazzaro V, Dileone M, Pilato F, Contarino MF, Musumeci G, Bentivoglio AR, et al. Repetitive transcranial magnetic stimulation of the motor cortex for hemichorea. J Neurol Neurosurg Psychiatry. 2006;77(9):1095–7 [Case Reports Letter].

    PubMed Central  PubMed  Google Scholar 

  249. Grimm E. Therapy of ballistic hyperkinesia (case report). Psychiatr Neurol Med Psychol (Leipz). 1980;32(6):369–72 [Case Reports].

    CAS  Google Scholar 

  250. Kawashima Y, Takahashi A, Hirato M, Ohye C. Stereotactic Vim-Vo-thalamotomy for choreatic movement disorder. Acta Neurochir Suppl (Wien). 1991;52:103–6 [Case Reports].

    CAS  Google Scholar 

  251. Siegfried J, Lippitz B. Chronic electrical stimulation of the VL-VPL complex and of the pallidum in the treatment of movement disorders: personal experience since 1982. Stereotact Funct Neurosurg. 1994;62(1–4):71–5 [Case Reports].

    CAS  PubMed  Google Scholar 

  252. Cardoso F, Jankovic J, Grossman RG, Hamilton WJ. Outcome after stereotactic thalamotomy for dystonia and hemiballismus. Neurosurgery. 1995;36(3):501–7; discussion 7–8 [Comparative Study Review].

    CAS  PubMed  Google Scholar 

  253. Krauss JK, Mundinger F. Functional stereotactic surgery for hemiballism. J Neurosurg. 1996;85(2):278–86.

    CAS  PubMed  Google Scholar 

  254. Astradsson A, Schweder P, Joint C, Forrow B, Thevathasan W, Pereira EA, et al. Thalamotomy for postapoplectic hemiballistic chorea in older adults. J Am Geriatr Soc. 2010;58(11):2240–1 [Case Reports Letter].

    PubMed  Google Scholar 

  255. Goto S, Kunitoku N, Hamasaki T, Nishikawa S, Ushio Y. Abolition of postapoplectic hemichorea by Vo-complex thalamotomy: long-term follow-up study. Mov Disord. 2001;16(4):771–4 [Case Reports Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  256. Yasargil MG. The results of stereotactic operations in hyperkinesia. Schweiz Med Wochenschr. 1962;92:1550–5.

    CAS  PubMed  Google Scholar 

  257. Suarez JI, Metman LV, Reich SG, Dougherty PM, Hallett M, Lenz FA. Pallidotomy for hemiballismus: efficacy and characteristics of neuronal activity. Ann Neurol. 1997;42(5):807–11 [Case Reports Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  258. Choi SJ, Lee SW, Kim MC, Kwon JY, Park CK, Sung JH, et al. Posteroventral pallidotomy in medically intractable postapoplectic monochorea: case report. Surg Neurol. 2003;59(6):486–90; discussion 90 [Case Reports Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  259. Hashimoto T, Morita H, Tada T, Maruyama T, Yamada Y, Ikeda S. Neuronal activity in the globus pallidus in chorea caused by striatal lacunar infarction. Ann Neurol. 2001;50(4):528–31 [Case Reports].

    CAS  PubMed  Google Scholar 

  260. Tseng KY, Tang CT, Chang CF, Chen KY. Treatment of delayed-onset post-stroke monochorea with stereotactic pallidotomy. J Clin Neurosci. 2010;17(6):779–81 [Case Reports].

    PubMed  Google Scholar 

  261. Goto T, Hashimoto T, Hirayama S, Kitazawa K. Pallidal neuronal activity in diabetic hemichorea-hemiballism. Mov Disord. 2010;25(9):1295–7 [Case Reports Letter].

    PubMed  Google Scholar 

  262. Carpay HA, Arts WF, Kloet A, Hoogland PH, Van Duinen SG. Hemichorea reversible after operation in a boy with cavernous angioma in the head of the caudate nucleus. J Neurol Neurosurg Psychiatry. 1994;57(12):1547–8 [Case Reports Letter].

    CAS  PubMed Central  PubMed  Google Scholar 

  263. Zabek M, Sobstyl M, Dzierzecki S, Gorecki W, Jakucinski M. Right hemichorea treated successfully by surgical removal of a left putaminal cavernous angioma. Clin Neurol Neurosurg. 2013;115(6):844–6.

    PubMed  Google Scholar 

  264. Karampelas I, Podgorsak MB, Plunkett RJ, Fenstermaker RA. Subthalamic nucleus metastasis causing hemichorea-hemiballism treated by gamma knife stereotactic radiosurgery. Acta Neurochir (Wien). 2008;150(4):395–6; discussion 7.

    CAS  Google Scholar 

  265. Tsubokawa T, Katayama Y, Yamamoto T. Control of persistent hemiballismus by chronic thalamic stimulation. Report of two cases. J Neurosurg. 1995;82(3):501–5 [Case Reports Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  266. Thompson TP, Kondziolka D, Albright AL. Thalamic stimulation for choreiform movement disorders in children. Report of two cases. J Neurosurg. 2000;92(4):718–21 [Case Reports].

    CAS  PubMed  Google Scholar 

  267. Nakano N, Uchiyama T, Okuda T, Kitano M, Taneda M. Successful long-term deep brain stimulation for hemichorea-hemiballism in a patient with diabetes. Case report. J Neurosurg. 2005;102(6):1137–41 [Case Reports].

    PubMed  Google Scholar 

  268. Hasegawa H, Mundil N, Samuel M, Jarosz J, Ashkan K. The treatment of persistent vascular hemidystonia-hemiballismus with unilateral GPi deep brain stimulation. Mov Disord. 2009;24(11):1697–8 [Case Reports Letter].

    PubMed  Google Scholar 

  269. Capelle HH, Kinfe TM, Krauss JK. Deep brain stimulation for treatment of hemichorea-hemiballism after craniopharyngioma resection: long-term follow-up. J Neurosurg. 2011;115(5):966–70 [Case Reports].

    PubMed  Google Scholar 

  270. Air EL, Ostrem JL, Sanger TD, Starr PA. Deep brain stimulation in children: experience and technical pearls. J Neurosurg Pediatr. 2011;8(6):566–74 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  271. Sato K, Nakagawa E, Saito Y, Komaki H, Sakuma H, Sugai K, et al. Hyperkinetic movement disorder in a child treated by globus pallidus stimulation. Brain Dev. 2009;31(6):452–5 [Case Reports].

    PubMed  Google Scholar 

  272. Angelini L, Nardocci N, Estienne M, Conti C, Dones I, Broggi G. Life-threatening dystonia-dyskinesias in a child: successful treatment with bilateral pallidal stimulation. Mov Disord. 2000;15(5):1010–2 [Case Reports].

    CAS  PubMed  Google Scholar 

  273. Hebb MO, Gaudet P, Mendez I. Deep brain stimulation to treat hyperkinetic symptoms of Cockayne syndrome. Mov Disord. 2006;21(1):112–5 [Case Reports].

    PubMed  Google Scholar 

  274. Koy A, Hellmich M, Pauls KA, Marks W, Lin JP, Fricke O, et al. Effects of deep brain stimulation in dyskinetic cerebral palsy: a meta-analysis. Mov Disord. 2013;28(5):647–54 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  275. Apetauerova D, Schirmer CM, Shils JL, Zani J, Arle JE. Successful bilateral deep brain stimulation of the globus pallidus internus for persistent status dystonicus and generalized chorea. J Neurosurg. 2010;113(3):634–8 [Case Reports].

    PubMed  Google Scholar 

  276. Vidailhet M, Yelnik J, Lagrange C, Fraix V, Grabli D, Thobois S, et al. Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: a prospective pilot study. Lancet Neurol. 2009;8(8):709–17 [Clinical Tria Multicenter Study Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  277. Spindler MA, Galifianakis NB, Wilkinson JR, Duda JE. Globus pallidus interna deep brain stimulation for tardive dyskinesia: case report and review of the literature. Parkinsonism Relat Disord. 2013;19(2):141–7 [Case Reports Review].

    PubMed  Google Scholar 

  278. Eltahawy HA, Feinstein A, Khan F, Saint-Cyr J, Lang AE, Lozano AM. Bilateral globus pallidus internus deep brain stimulation in tardive dyskinesia: a case report. Mov Disord. 2004;19(8):969–72 [Case Reports Comparative Study].

    PubMed  Google Scholar 

  279. Schrader C, Peschel T, Petermeyer M, Dengler R, Hellwig D. Unilateral deep brain stimulation of the internal globus pallidus alleviates tardive dyskinesia. Mov Disord. 2004;19(5):583–5 [Case Reports].

    PubMed  Google Scholar 

  280. Kosel M, Sturm V, Frick C, Lenartz D, Zeidler G, Brodesser D, et al. Mood improvement after deep brain stimulation of the internal globus pallidus for tardive dyskinesia in a patient suffering from major depression. J Psychiatr Res. 2007;41(9):801–3 [Case Reports].

    PubMed  Google Scholar 

  281. Damier P, Thobois S, Witjas T, Cuny E, Derost P, Raoul S, et al. Bilateral deep brain stimulation of the globus pallidus to treat tardive dyskinesia. Arch Gen Psychiatry. 2007;64(2):170–6 [Clinical Trial Comparative Study Multicenter Study Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  282. Kefalopoulou Z, Paschali A, Markaki E, Vassilakos P, Ellul J, Constantoyannis C. A double-blind study on a patient with tardive dyskinesia treated with pallidal deep brain stimulation. Acta Neurol Scand. 2009;119(4):269–73 [Case Reports].

    CAS  PubMed  Google Scholar 

  283. Trottenberg T, Volkmann J, Deuschl G, Kuhn AA, Schneider GH, Muller J, et al. Treatment of severe tardive dystonia with pallidal deep brain stimulation. Neurology. 2005;64(2):344–6.

    CAS  PubMed  Google Scholar 

  284. Wang Y, Turnbull I, Calne S, Stoessl AJ, Calne DB. Pallidotomy for tardive dyskinesia. Lancet. 1997;349(9054):777–8 [Case Reports Letter Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  285. Weetman J, Anderson IM, Gregory RP, Gill SS. Bilateral posteroventral pallidotomy for severe antipsychotic induced tardive dyskinesia and dystonia. J Neurol Neurosurg Psychiatry. 1997;63(4):554–6 [Case Reports Letter].

    CAS  PubMed Central  PubMed  Google Scholar 

  286. Hillier CE, Wiles CM, Simpson BA. Thalamotomy for severe antipsychotic induced tardive dyskinesia and dystonia. J Neurol Neurosurg Psychiatry. 1999;66(2):250–1 [Case Reports Letter].

    CAS  PubMed Central  PubMed  Google Scholar 

  287. Lenders MW, Buschman HP, Vergouwen MD, Steur EN, Kolling P, Hariz M. Long term results of unilateral posteroventral pallidotomy for antipsychotic drug induced tardive dyskinesia. J Neurol Neurosurg Psychiatry. 2005;76(7):1039 [Case Reports Letter Research Support, Non-U.S. Gov’t].

    CAS  PubMed Central  PubMed  Google Scholar 

  288. Yianni J, Nandi D, Bradley K, Soper N, Gregory R, Joint C, et al. Senile chorea treated by deep brain stimulation: a clinical, neurophysiological and functional imaging study. Mov Disord. 2004;19(5):597–602 [Case Reports Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  289. Loher TJ, Krauss JK, Burgunder JM, Taub E, Siegfried J. Chronic thalamic stimulation for treatment of dystonic paroxysmal nonkinesigenic dyskinesia. Neurology. 2001;56(2):268–70 [Case Reports].

    CAS  PubMed  Google Scholar 

  290. Yamada K, Goto S, Soyama N, Shimoda O, Kudo M, Kuratsu J, et al. Complete suppression of paroxysmal nonkinesigenic dyskinesia by globus pallidus internus pallidal stimulation. Mov Disord. 2006;21(4):576–9 [Case Reports Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  291. Kaufman CB, Mink JW, Schwalb JM. Bilateral deep brain stimulation for treatment of medically refractory paroxysmal nonkinesigenic dyskinesia. J Neurosurg. 2010;112(4):847–50 [Case Reports].

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Moro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Martinez-Fernandez, R., Moro, E. (2014). Chorea: A Surgical Approach. In: Micheli, F., LeWitt, P. (eds) Chorea. Springer, London. https://doi.org/10.1007/978-1-4471-6455-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6455-5_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6454-8

  • Online ISBN: 978-1-4471-6455-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics