Pollutant Formation and Health Effects

  • Jenny M. JonesEmail author
  • Amanda R. Lea-Langton
  • Lin Ma
  • Mohamed Pourkashanian
  • Alan Williams
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This chapter deals with pollutant formation and the consequential health effects. The major features of pollutants arising from biomass combustion are discussed. These include smoke, Unburned Hydrocarbons (UBH), volatiles, Polycyclic Aromatic Hydrocarbons (PAH), Nitrogen Oxides (NOx), other nitrogenous pollutants, sulphur, chlorine compounds and dioxins. Trace metals and particularly the interaction of K–Cl–S chemistry and aerosol emissions are discussed.


Pollutant formation Smoke NOx PAH Trace metals 


  1. Bai J, Yu C, Li L, Wu P, Luo Z, Ni M (2013) Experimental study on the NO and N2O formation characteristics during biomass combustion|. Energy Fuels 27:515–522CrossRefGoogle Scholar
  2. Bockhorn H, D’Anna A, Sarofim AF, Wang H (eds) (2009) Combustion generated fine carbonaceous particles. In: Proceedings of an international workshop, Anacapri 2007, KIT Scientific Publishing, KarlsruheGoogle Scholar
  3. Bolling AK, Pagels J, Yttri KE, Barregard L, Sallsten G, Schwarze PE, Boman C (2009) Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Part Fibre Toxicol 6:29CrossRefGoogle Scholar
  4. Bond TC, Doherty SJ, Fahey DW, Forster P, Berntsen T et al (2013) Bounding the role of black carbon in the climate system, a scientific assessment. J Geophys Res Atmos 118:5380–5552CrossRefGoogle Scholar
  5. Bryers RW (1996) Fireside slagging, fouling, and high temperature corrosion of heat transfer surfaces due to impurities in steam-rising fuels. Prog Energy Combust Sci 22:29–120CrossRefGoogle Scholar
  6. Colket MB, Hall RJ (1994) In: Bockhorn H (ed) Soot formation in combustion: mechanisms and models. Springer, Berlin, pp 442–470Google Scholar
  7. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678CrossRefGoogle Scholar
  8. D’Anna A, Violi A (2005) Detailed modeling of the molecular growth process in aromatic and aliphatic premixed flames. Energy Fuels 19:79–86CrossRefGoogle Scholar
  9. Darvell LI, Brindley C, Baxter XC, Jones JM, Williams A (2012) Nitrogen in biomass char and its fate during combustion—a model compound approach. Energy Fuels 26:6482–6491Google Scholar
  10. De Soete GG (1975) Overall reaction rates of NO and N2 formation from fuel nitrogen. Proc Combust Inst 15:1093–1102CrossRefGoogle Scholar
  11. Di Nola G, de Jong W, Spliethoff H (2010) TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: Partitioning of the fuel-bound nitrogen. Fuel Process Technol 91:103–115CrossRefGoogle Scholar
  12. Eriksson AC, Nordin EZ, Nyström R, Pettersson E, Swietlicki F, Bergvall C, Westerholm R, Boman C, Pagels JH (2014) Particulate PAH emissions from residential biomass combustion: time-resolved analysis with aerosol mass spectrometry. Environ Sci Technol 48:7143–7150CrossRefGoogle Scholar
  13. Fitzpatrick EM, Jones JM, Pourkashanian M, Ross AB, Williams A, Bartle KD (2008) Mechanistic aspects of soot formation from the combustion of pine wood. Energy Fuels 22:3771–3778CrossRefGoogle Scholar
  14. Frenklach M, Wang H (1991) Detailed modeling of soot particle nucleation and growth. Proc Combust Inst 23:1559–1566CrossRefGoogle Scholar
  15. Glarborg P, Marshall P (2005) Mechanism and modeling of the formation of gaseous alkali sulfates. Combust Flame 141:22–39CrossRefGoogle Scholar
  16. Hansen S, Glarborg P (2010) A simplified model for volatile-N oxidation. Energy Fuels 24:2883–2890CrossRefGoogle Scholar
  17. Hansson K-M, Amand L-K, Habermann A, Winter F (2003a) Pyrolysis of poly-L-leucine under combustion-like conditions. Fuel 82:653–660CrossRefGoogle Scholar
  18. Hansson K-M, Samuelsson J, Amand L-E, Tullin C (2003b) The temperature’s influence on the selectivity between HNCO and HCN from pyrolysis of 2,5-diketopiperazine and 2-pyridone. Fuel 82:2163–2172CrossRefGoogle Scholar
  19. Jimenez S, Ballester PM (2008) Vaporization of trace elements and their emission with submicrometer aerosols in biomass combustion. Energy Fuels 22:2270–2277CrossRefGoogle Scholar
  20. Kramlich JC, Cole JA, McCarthy JM, Lanier WS, McSorley JA (1989) Mechanisms of nitrous oxide formation in coal flames. Combust Flame 77:375–384CrossRefGoogle Scholar
  21. Lavric ED, Konnov AA, De Ruyck J (2004) Dioxin levels in wood combustion—a review. Biomass Bioenergy 26:115–145CrossRefGoogle Scholar
  22. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhalation Toxicol 19:67–106CrossRefGoogle Scholar
  23. Ranzi E (2009) Detailed kinetics of real fuel combustion: main paths to benzene and PAH formation. In: Bockhorn H, D’Anna A, Sarofim AF, Wang H (eds) Combustion generated fine carbonaceous particle. KIY Scientific Publishing, Kahrlstuhr, pp 99–124Google Scholar
  24. Smith KA, Mosier AR, Crutzen PJ, Winiwarter W (2012) The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth’s climate. Philos Trans R Soc B 367:1169–1174CrossRefGoogle Scholar
  25. Stubenberger G, Scharler R, Zahirovic S, Obernberger I (2008) Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models. Fuel 87:793–806CrossRefGoogle Scholar
  26. Torvela T, Tissari J, Sippula O, Kaivosoja T, Leskinen J, Virén A, Lähde A, Jokiniemi J (2014) Effect of wood combustion conditions on the morphology of freshly emitted fine particles. Atmos Environ 87:65–76CrossRefGoogle Scholar
  27. UN IPCC (2007) 4th assessment report, United NationsGoogle Scholar
  28. WHO (2014) World Health Organisation. Geneva, SwitzerlandGoogle Scholar
  29. Wu H, Bashir MS, Jensen PA, Sander B, Glarborg P (2013) Impact of coal ash addition on ash transformation and deposition in a full scale suspension-firing boiler. Fuel 113:632–643CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Jenny M. Jones
    • 1
    Email author
  • Amanda R. Lea-Langton
    • 1
  • Lin Ma
    • 2
  • Mohamed Pourkashanian
    • 2
  • Alan Williams
    • 2
  1. 1.Energy Research InstituteUniversity of LeedsLeedsUK
  2. 2.Energy Technology and Innovation InitiativeUniversity of LeedsLeedsUK

Personalised recommendations