The Combustion of Solid Biomass

  • Jenny M. JonesEmail author
  • Amanda R. Lea-Langton
  • Lin Ma
  • Mohamed Pourkashanian
  • Alan Williams
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


The combustion of solid biomass is covered in this chapter. This covers the general mechanism of combustion, moisture evaporation, devolatilisation, the combustion of the volatiles gases and tars and finally char combustion. Details are given about the kinetics of these reactions, the devolatilisation products which if unburned give CO and organic products and char combustion which if incompletely burned result in fine char particles in the combustion products.


Devolatilisation Volatile products Char combustion 


  1. ANSYS FLUENT (2014) Ansys Inc, USA.
  2. Avila C, Pang CH, Wu T, Lester E (2011) Morphology and reactivity characteristics of char biomass particles. Bioresour Technol 102:5237–5243CrossRefGoogle Scholar
  3. Backreedy RI, Jones JM, Pourkashanian M, Williams A (2002) Modeling the reaction of oxygen with coal and biomass chars. Proc Combust Inst 29:415–422Google Scholar
  4. Basu P (2013) Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic Press, WalthamGoogle Scholar
  5. Bews IM, Hayhurst AN, Richardson SM, Taylor SG (2001) The order. Arrhenius parameters, and mechanism of the reaction between gaseous oxygen and solid carbon. Combust Flame 124:231–245CrossRefGoogle Scholar
  6. Blondeau J, Jeanmart H (2011) Biomass pyrolysis in pulverized-fuel boilers: derivation of apparent kinetic parameters for inclusion in CFD codes. Proc Combust Inst 33:1787–1794CrossRefGoogle Scholar
  7. Branca C, Di Blasi C (2013) A unified mechanism of the combustion reactions of lignellulosic fuels. Thermochemica Acta 565:58–64CrossRefGoogle Scholar
  8. Chemkin (2014) Reaction design.
  9. Chen Y, Charpenay S, Jensen A, Wojotowicz MA, Serio MA (1998) Modeling of biomass pyrolysis kinetics. Symp (Int) Combust 27:1327–1334Google Scholar
  10. di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Energy Combust Sci 34:47–90CrossRefGoogle Scholar
  11. di Blasi C (2009) Combustion and gasification rates of lignocellulosic chars. Prog Energy Combust Sci 35:121–140CrossRefGoogle Scholar
  12. Faravelli T, Frassoldati A, Hemings EB, Ranzi E (2013) Multistep kinetic model of biomass pyrolysis in cleaner combustion. Springer, London, pp 111–139Google Scholar
  13. Hayhurst AN (2013) The kinetics of the pyrolysis or devolatilisation of sewage sludge and other solid fuels. Combust Flame 160:138–144CrossRefGoogle Scholar
  14. Haynes BS, Newbury TG (2000) Oxyreactivity of carbon surface oxides. Proc Combust Inst 28:2197–2203CrossRefGoogle Scholar
  15. Hecht ES, Shaddix CR, Lighty JAS (2013) Analysis of the errors associated with typical pulverized coal char combustion modeling assumptions for oxy-fuel combustion. Combust Flame 160:1499–1509Google Scholar
  16. Higman C, van der Burgt M (2008) Gasification, 2nd edn. Elsevier Inc, Amsterdam. ISBN: 978-0-7506-8528-3Google Scholar
  17. Hurt RH, Calo JM (2001) Semi-global intrinsic kinetics for char combustion modelling. Combust Flame 125:1138–1149CrossRefGoogle Scholar
  18. Hurt RH, Sun JK, Lunden M (1998) A kinetic model of carbon burnout in pulverized coal combustion. Combust Flame 113:181–197CrossRefGoogle Scholar
  19. Jensen PA, Frandsen F, Dam-Johansen K, Sander B (2000) Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis. Energy Fuels 14:1280–1285CrossRefGoogle Scholar
  20. Jones JM, Patterson PM, Pourkashanian M, Williams A, Arenillas A, Rubiera F, Pis JJ (1999) Modelling NOx formation in coal particle combustion at high temperature: an investigation of devolatilisation kinetic factors. Fuel 78:1171–1180CrossRefGoogle Scholar
  21. Jones JM, Darvell LI, Bridgeman TG, Pourkashanian M, Williams A (2007) An investigation of the thermal and catalytic behaviour of potassium in biomass combustion. Proc Combust Inst 31:1955–1963CrossRefGoogle Scholar
  22. Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, San DiegoGoogle Scholar
  23. Kobayashi H, Howard JB, Sarofim AF (1977) Coal devolatilization at high temperatures. Proc Combust Inst 16:411–425CrossRefGoogle Scholar
  24. Lang T, Hurt RH (2003) Char combustion reactivities for a suite of diverse solid fuels and char-forming organic model compounds. Proc Combust Inst 29:423–431CrossRefGoogle Scholar
  25. Lasode OA, Balogun AO, McDonald AG (2014) Torrefaction of some Nigerian lignocellulosic resources and decomposition kinetics. J Anal Appl Pyrol.
  26. Lu H, Ip E, Scott J, Foster P, Vickers M, Baxter LL (2010) Effects of particle shape and size on devolatilization of biomass particle. Fuel 89:1156–1168CrossRefGoogle Scholar
  27. Ma L, Jones JM, Pourkashanian M, Williams A (2007) Modelling the combustion of pulverised biomass in an industrial furnace. Fuel 86:1959–1965Google Scholar
  28. Meesri C, Moghtader IB (2003) Experimental and numerical analysis of sawdust-char combustion reactivity in a drop tube reactor. Combust Sci Technol 175:793–823CrossRefGoogle Scholar
  29. Murakami K, Sugawara K, Kawaguchi T (2013) Analysis of combustion rate of various carbon materials for iron ore sintering process. ISIJ Int 53(9):1580–1587CrossRefGoogle Scholar
  30. Niksa S (2000) Predicting the rapid devolatilization of diverse forms of biomass with bio FLASHCHAIN. Symp (Int) Combust 28:2727–2733Google Scholar
  31. Peters B (2003) Thermal conversion of solid fuels. WIT Press, SouthamptonGoogle Scholar
  32. Pickard S, Daood SS, Pourkashard M, Nimmo W (2013) Robust extension of the Coats-Redfern technique: reviewing rapid and reliable reactivity analysis of complex fields decomposing in inert and oxidizing thermogravimetric analysis atmospheresGoogle Scholar
  33. Piriou B, Vaitilingom G, Veyssière B, Cuq B, Rouau X (2013) Potential direct use of solid biomass in internal combustion engines. Prog Energy Combust Sci 39:169–188CrossRefGoogle Scholar
  34. Ranzi E, Frassoldati A, Stagni A, Pelucchi M, Cuoci A, Faravelli T (2014) Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels. Int J Chem Kinet 46:512–542CrossRefGoogle Scholar
  35. Saddawi A, Jones JM, Williams A, Wojtowicz MA (2010) Kinetics of the thermal decomposition of biomass. Energy Fuels 24:1274–1282CrossRefGoogle Scholar
  36. Saddawi A, Jones JM, Williams A (2012) Influence of alkali metals on the kinetics of the thermal decomposition of biomass. Fuel Process Technol 104:189–197CrossRefGoogle Scholar
  37. Sheng CD, Azevedo JLT (2002) Modelling biomass devolatilization using the chemical percolation devolatilization model for the main components. Proc Combust Inst 29:407–414CrossRefGoogle Scholar
  38. Smith IW (1987) The intrinsic reactivity of carbons to oxygen. Fuel 57:409–414CrossRefGoogle Scholar
  39. Sørum L, Campbell PA, Erland N, Haugen L, Mitchell RE (2014) An experimental study of the reactivity of cellulosic-based chars from wastes. Fuel 130:306–314CrossRefGoogle Scholar
  40. van Lith SC, Jensen PA, Frandsen FJ, Glarborg P (2008) Release to the gas phase of inorganic elements during wood combustion. Part 2: influence of fuel composition. Energy Fuels 22:1598–1609CrossRefGoogle Scholar
  41. Weber R (2008) Extracting mathematical exact kinetic parameters from experimental data on combustion and pyrolysis of solid fuels. J Energy Inst 81:226–233CrossRefGoogle Scholar
  42. Williams A, Jones JM, Ma L, Pourkashanian M (2012) Pollutants from the combustion of biomass. Prog Energy Combust Sci 38:113–137CrossRefGoogle Scholar
  43. Wornat MJ, Hurt RH, Yang NYC, Headley TJ (1995) Structural and compositional transformations of biomass chars during combustion. Combust Flame 100:131–143CrossRefGoogle Scholar
  44. Wornat MJ, Hurt RH, Davis KA, Yang NYC (1996) Single-particle combustion of two biomass chars. Symp (Int) Combust 26:3075–3083Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Jenny M. Jones
    • 1
    Email author
  • Amanda R. Lea-Langton
    • 1
  • Lin Ma
    • 2
  • Mohamed Pourkashanian
    • 2
  • Alan Williams
    • 2
  1. 1.Energy Research InstituteUniversity of LeedsLeedsUK
  2. 2.Energy Technology and Innovation InitiativeUniversity of LeedsLeedsUK

Personalised recommendations