Combustion of Solid Biomass: Classification of Fuels

  • Jenny M. JonesEmail author
  • Amanda R. Lea-Langton
  • Lin Ma
  • Mohamed Pourkashanian
  • Alan Williams
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


The combustion of solid biomass and the classification of these fuels are considered. Firstly the different methods of combustion appliances and plants are outlined from a fundamental point of view. The forms and types of solid biomass fuels, their chemical composition and the way they are classified are then described. Characterisation by chemical analysis and instrumental methods are outlined.


Combustion methods Classification Chemical analysis 


  1. Abuelnuor AAA, Wahid MA, Hosseini SE, Saat A, Saqr KM, Sait HH, Osman M (2014) Characteristics of biomass in flameless combustion: a review. Renew Sustain Energy Rev 33(1):363–370CrossRefGoogle Scholar
  2. Basu P (2013) Biomass gasification, pyrolysis and torrefaction practical design and theory, 2nd edn. Elsevier Inc, AmsterdamGoogle Scholar
  3. Chen Y, Carpenay S, Jenson A, Wojotowicz MA, Serio MA (1998) Modeling of biomass pyrolysis kinetics. Symp (Int) Combust 27:1327−1334Google Scholar
  4. Darvell LI, Brindley C, Baxter XC, Jones JM, Williams A (2012) Nitrogen in biomass char and its fate during combustion—a model compound approach. Energy Fuels 26:6482–6491Google Scholar
  5. DEFRA (2007) UK Biomass Strategy. DEFRA, LondonGoogle Scholar
  6. Jones JM, Nawaz M, Darvell LI, Ross AB, Pourkashanian M, Williams A (2004) Towards biomass classification for energy applications, in science in thermal and chemical biomass conversion, Victoria, Canada, 30 Aug–2 Sept 2004Google Scholar
  7. Kandiyoti R, Herod AA, Bartle KD (2006) Solid fuels and heavy hydrocarbon liquids. Elsevier, OxfordGoogle Scholar
  8. Nowakowski DJ, Jones JM, Brydson RMD, Ross AB (2007) Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel 86:2389–2402CrossRefGoogle Scholar
  9. Phyllis 2 (2014) Database for biomass and waste. Energy Research Centre, Netherlands.
  10. Rabemanolontsoa H, Ayada S, Saka S (2011) Quantitative method applicable for various biomass species to determine their chemical composition. Biomass Bioenergy 35:4630–4635CrossRefGoogle Scholar
  11. Smith KA, Mosier AR, Crutzen PJ, Winiwarter W (2012) The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth’s climate. Philos Trans R Soc B 367:1169–1174CrossRefGoogle Scholar
  12. Speight JG (2013) Coal-fired power generation handbook. Scrivener Publishing, MACrossRefGoogle Scholar
  13. Spliethoff H (2010) Power generation from solid fuels. Springer, LondonCrossRefGoogle Scholar
  14. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35:3748–3762Google Scholar
  15. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933CrossRefGoogle Scholar
  16. Vassilev SV, Baxter D, Vassileva CG (2013) An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter. Fuel 112:391–449CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Jenny M. Jones
    • 1
    Email author
  • Amanda R. Lea-Langton
    • 1
  • Lin Ma
    • 2
  • Mohamed Pourkashanian
    • 2
  • Alan Williams
    • 2
  1. 1.Energy Research Institute University of LeedsLeedsUK
  2. 2.Energy Technology and Innovation InitiativeUniversity of LeedsLeedsUK

Personalised recommendations