Advertisement

Valorization of Liquid End-Residues of H2 Production by Microbial Fuel Cell

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Microbial fuel cell (MFC) technology can be employed in order to add value to the metabolic products of acetogenesis fermentation after H2 production.

Keywords

Anaerobic Digestion Microbial Fuel Cell Biogas Production Internal Resistance Direct Electron Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.C. Hallenbeck, Fermentative hydrogen production: principles, progress and prognosis. Int. J. Hydrogen Energy 34, 7379–7389 (2009)CrossRefGoogle Scholar
  2. 2.
    K. Nath, M. Muthukumar, A. Kumar, D. Das, Kinetics of two-stage fermentation process for the production of hydrogen. Int. J. Hydrogen Energy 33, 1195–1203 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Hoekema, R.D. Douma, M. Janssen, J. Tramper, R.H. Wijffels, Controlling light-use by Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor. Biotechnol. Bioeng. 95(4), 613–626 (2006)CrossRefGoogle Scholar
  4. 4.
    B. Logan, Microbial Fuel Cells (Wiley, Hoboken, 2008)Google Scholar
  5. 5.
    P. Clauwaert, Electrodes as electron donors for microbial reduction processes. Ph.D. thesis, Ghent University, Belgium (2009)Google Scholar
  6. 6.
    P. Clauwaert, W. Verstraete, Methanogenesis in membraneless microbial electrolysis cells. Appl. Microbiol. Biotechnol. 82, 829–836 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Veit, M. Kalim Akhtar, T. Mizutani, P.R. Jones, Constructing and testing the thermodynamic limits of synthetic NAD[P]H: H2 pathways. Microb. Biotechnol. 1(5), 382–394 (2008)Google Scholar
  8. 8.
    R. Arechederra, S.D. Minteer, Organelle-based biofuel cells: immobilized mitochondria on carbon paper electrodes. Electrochim. Acta 53, 6698–6703 (2008)CrossRefGoogle Scholar
  9. 9.
    A. Heller, Miniature biofuel cells. Phys. Chem. Chem. Phys. 6, 209–216 (2004)CrossRefGoogle Scholar
  10. 10.
    J. Kim, H. Jia, P. Wang, Challenges in biocatalysts for enzyme-based biofuel cells. Biotechnol. Adv. 24, 296–308 (2006)CrossRefGoogle Scholar
  11. 11.
    N. Mano, F. Mao, A. Heller, Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 125, 6588–6595 (2003)Google Scholar
  12. 12.
    B.E. Logan, B. Homelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aeterman, W. Verstraete, K. Rabaey, Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40(17), 5181–5192 (2006)CrossRefGoogle Scholar
  13. 13.
    T. Tommasi, B. Ruggeri, S. Sanfilippo, Energy valorization of residues of dark anaerobic production of hydrogen. J. Clean. Prod. 34, 91–97 (2012)CrossRefGoogle Scholar
  14. 14.
    P. Aelterman, K. Rabaey, P. Clauwaert, W. Verstraete, Microbial fuel cell for wastewater treatment. Water Sci. Technol. 54, 9–15 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Venkata Mohan, S. Srikanth, G. Velvizhi, M. Lenin Babu, in Chapter 14: Microbial Fuel Cells for Sustainable Bioenergy Generation: Principles and Perspective Applications, ed. by V.K. Gupta, M.G. Tuohy. Biofuel Technologies (Springer, Heidelberg, 2013), pp. 335–368Google Scholar
  16. 16.
    U. Schröder, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 9, 2619–2629 (2007)CrossRefGoogle Scholar
  17. 17.
    P. Aelterman, K. Rabaey, H.T. Pham, N. Boon, W. Verstraete, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40, 3388–3394 (2006)CrossRefGoogle Scholar
  18. 18.
    P. Aelterman, K. Rabaey, L. De Schamphelaire, P. Clauwaert, N. Boon, W. Verstraete, in Microbial Fuel Cell as an Engineered Ecosystem, ed. by J. Wall, C.S. Harwood, A.L. Demain. Bioenergy (ASM, Washington DC, 2008), pp. 307–320Google Scholar
  19. 19.
    B.E. Logan, J.M. Regan, Microbial challenges and applications. Environ. Sci. Technol. 40, 5172–5180 (2006)CrossRefGoogle Scholar
  20. 20.
    D.R. Lovley, Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4, 497–508 (2006)CrossRefGoogle Scholar
  21. 21.
    K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382 (2004)CrossRefGoogle Scholar
  22. 22.
    G.T. Kim, M.S. Hyun, I.S. Chang, H.J. Kim, H.S. Park, B.H. Kim, S.D. Kim, J.W.T. Wimpenny, A.J. Weightman, Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J. Appl. Microbiol. 99, 978–987 (2005)CrossRefGoogle Scholar
  23. 23.
    P. Aelterman, Microbial fuel cells for the treatment of waste streams with energy recovery. Ph.D. thesis, Gent University Belgium (2009)Google Scholar
  24. 24.
    D. Hidalgo, T. Tommasi, V. Cauda, S. Porro, A. Chiodoni, K. Bejtka, B. Ruggeri, Streamlining of commercial Berl saddles: a new material to improve the performance of microbial fuel cells. Energy 71, 615–623 (2014)CrossRefGoogle Scholar
  25. 25.
    J.B. Benziger, M.B. Satterfield, W.H.J. Hogarth, J.P. Nehlsen, I.G. Kevrekidis, The power performance curve for engineering analysis of fuel cells. J. Power Sources 155, 272–285 (2006)CrossRefGoogle Scholar
  26. 26.
    P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Composition and distribution of internal resistance in three types of microbial fuel cells. Appl. Microbiol. Biotechnol. 77, 551–558 (2007)CrossRefGoogle Scholar
  27. 27.
    P. Clauwaert, P. Aelterman, T.H. Pham, L. De Schamphelaire, M. Carballa, K. Rabaey, W. Verstraete, Minimizing losses in bio-electrochemical systems: the road to applications. Appl. Microbiol. Biotechnol. 79, 901–913 (2008)CrossRefGoogle Scholar
  28. 28.
    P. Aelterman, M. Versichele, M. Marzorati, N. Boon, W. Verstraete, Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour. Technol. 99, 8895–8902 (2008)CrossRefGoogle Scholar
  29. 29.
    T. Tommasi, A. Chiolerio, M. Crepaldi, D. Demarchi, A microbial fuel cell powering an all-digital piezoresistive wireless sensor system. Microsyst. Technol. 20, 1023–1033 (2014)CrossRefGoogle Scholar
  30. 30.
    R.A. Rozendal, H.V.M. Vamelers, C.J.N. Buisman, Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 40, 5206–5211 (2006)CrossRefGoogle Scholar
  31. 31.
    D. Call, B.E. Logan, Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ. Sci. Technol. 42, 3401–3406 (2008)CrossRefGoogle Scholar
  32. 32.
    P. Aelterman, K. Rabaey, P. Clauwaert, W Verstraete, Microbial fuel cells for wastewater treatment, Water Sci. Technol. 54(8), 9–15 (2006)Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Bernardo Ruggeri
    • 1
  • Tonia Tommasi
    • 2
  • Sara Sanfilippo
    • 1
  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
  2. 2.Center for Space Human RoboticsIstituto Italiano di TecnologiaTurinItaly

Personalised recommendations